

cppyy: Automatic Python-C++ bindings

cppyy is an automatic, run-time, Python-C++ bindings generator, for calling
C++ from Python and Python from C++.
Run-time generation enables detailed specialization for higher performance,
lazy loading for reduced memory use in large scale projects, Python-side
cross-inheritance and callbacks for working with C++ frameworks, run-time
template instantiation, automatic object downcasting, exception mapping, and
interactive exploration of C++ libraries.
cppyy delivers this without any language extensions, intermediate languages,
or the need for boiler-plate hand-written code.
For design and performance, see this PyHPC paper [http://wlav.web.cern.ch/wlav/Cppyy_LavrijsenDutta_PyHPC16.pdf], albeit that the
CPython/cppyy performance has been vastly improved since.

cppyy is based on Cling [https://github.com/vgvassilev/cling], the C++ interpreter, to match Python’s dynamism,
interactivity, and run-time behavior.
Consider this session, showing dynamic, interactive, mixing of C++ and Python
features (there are more examples throughout the documentation and in the
tutorial [https://github.com/wlav/cppyy/blob/master/doc/tutorial/CppyyTutorial.ipynb]):

>>> import cppyy
>>> cppyy.cppdef("""
... class MyClass {
... public:
... MyClass(int i) : m_data(i) {}
... virtual ~MyClass() {}
... virtual int add_int(int i) { return m_data + i; }
... int m_data;
... };""")
True
>>> from cppyy.gbl import MyClass
>>> m = MyClass(42)
>>> cppyy.cppdef("""
... void say_hello(MyClass* m) {
... std::cout << "Hello, the number is: " << m->m_data << std::endl;
... }""")
True
>>> MyClass.say_hello = cppyy.gbl.say_hello
>>> m.say_hello()
Hello, the number is: 42
>>> m.m_data = 13
>>> m.say_hello()
Hello, the number is: 13
>>> class PyMyClass(MyClass):
... def add_int(self, i): # python side override (CPython only)
... return self.m_data + 2*i
...
>>> cppyy.cppdef("int callback(MyClass* m, int i) { return m->add_int(i); }")
True
>>> cppyy.gbl.callback(m, 2) # calls C++ add_int
15
>>> cppyy.gbl.callback(PyMyClass(1), 2) # calls Python-side override
5
>>>

With a modern C++ compiler having its back, cppyy is future-proof.
Consider the following session using boost::any, a capsule-type that
allows for heterogeneous containers in C++.
The Boost [http://www.boost.org/] library is well known for its no holds barred use of modern C++
and heavy use of templates:

>>> import cppyy
>>> cppyy.include('boost/any.hpp') # assumes you have boost installed
>>> from cppyy.gbl import std, boost
>>> val = boost.any() # the capsule
>>> val.__assign__(std.vector[int]()) # assign it a std::vector<int>
<cppyy.gbl.boost.any object at 0xf6a8a0>
>>> val.type() == cppyy.typeid(std.vector[int]) # verify type
True
>>> extract = boost.any_cast[int](std.move(val)) # wrong cast
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
cppyy.gbl.boost.bad_any_cast: Could not instantiate any_cast<int>:
 int boost::any_cast(boost::any&& operand) =>
 wrapexcept<boost::bad_any_cast>: boost::bad_any_cast: failed conversion using boost::any_cast
>>> extract = boost.any_cast[std.vector[int]](val) # correct cast
>>> type(extract) is std.vector[int]
True
>>> extract += xrange(100)
>>> len(extract)
100
>>> val.__assign__(std.move(extract)) # move forced
<cppyy.gbl.boost.any object at 0xf6a8a0>
>>> len(extract) # now empty (or invalid)
0
>>> extract = boost.any_cast[std.vector[int]](val)
>>> list(extract)
[0, 1, 2, 3, 4, 5, 6, ..., 97, 98, 99]
>>>

Of course, there is no reason to use Boost from Python (in fact, this example
calls out for pythonizations), but it shows that
cppyy seamlessly supports many advanced C++ features.

cppyy is available for both CPython [http://python.org] (v2 and v3) and PyPy [http://pypy.org], reaching
C++-like performance with the latter.
It makes judicious use of precompiled headers, dynamic loading, and lazy
instantiation, to support C++ programs consisting of millions of lines of
code and many thousands of classes.
cppyy minimizes dependencies to allow its use in distributed, heterogeneous,
development environments.

	Changelog

	License and copyright

Getting Started

	Installation

	Trying it out

	Example repos

	Bugs and feedback

Features

	Basic types

	Strings/Unicode

	Classes

	Functions

	Type conversions

	STL

	Exceptions

	Python

	Low-level code

	Miscellaneous

	Debugging

Redistribution

	Pythonizations

	Utilities

	CMake interface

Developers

	PyPI Packages

	Repositories

	Test suite

Background

	History

	Philosophy

Bugs and feedback

Please report bugs or requests for improvement on the issue tracker [https://github.com/wlav/cppyy/issues].

Changelog

For convenience, this changelog keeps tracks of changes with version numbers
of the main cppyy package, but many of the actual changes are in the lower
level packages, which have their own releases.
See packages, for details on the package structure.
PyPy support lags CPython support.

2022-04-03: 2.3.1

	Use portable type Py_ssize_t instead of ssize_t

2022-03-08: 2.3.0

	CUDA support (up to version 10.2)

	Allow std::string_view<char> initialization from Python str (copies)

	Provide access to extern “C” declared functions in namespaces

	Support for (multiple and nested) anonymous structs

	Pull forward upstream patch for PPC

	Only apply system_dirs patch (for asan) on Linux

	Add unloaded classes to namespaces in dir()

	Fix lookup of templates of function with template args

	Fix lookup of templates types with << in name

	Fix regression for accessing char16_t data member arrays

	Add custom __reshape__ method to CPPInstance to allow array cast

	Prioritize callee exceptions over bindings exceptions

	Prevent infinite recursion when instantiating class with no constructors

2021-11-14: 2.2.0

	Migrated repos to github/wlav

	Properly resolve enum type of class enums

	Get proper shape of void* and enum arrays

	Fix access to (const) ref data members

	Fix sometimes PCH uninstall issue

	Fix argument passing of fixed arrays of pointers

	Include all gcc system paths (for asan)

	Initial support for Apple M1

2021-07-17: 2.1.0

	Support for vector calls with CPython 3.8 and newer

	Support for typed C++ literals as defaults when mixing with keywords

	Enable reshaping of multi-dim LowLevelViews

	Refactored multi-dim arrays and support for multi-dim assignment

	Support tuple-based indexing for multi-dim arrays

	Direct support for C’s _Complex (_Complex_double/_float on Windows)

	sizeof() forwards to ctypes.sizeof() for ctypes’ types

	Upgrade cmake fragments for Clang9

	Prevent clash with Julia’s LLVM when loading cppyy into PyCall

	Upgrade to latest Cling patch release

2021-05-14: 2.0.0

	Upgrade to latest Cling based on Clang/LLVM 9

	Make C++17 the default standard on Windows

2021-04-28: 1.9.6

	Reverse operators for std::complex targeting Python’s complex

	Version the precompiled header with the cppyy-cling package version

	Cover more iterator protocol use cases

	Add missing cppyy/__pyinstaller pkg to sdist

	Single-inheritance support for cross-inherited templated constructors

	Disallow float -> const long long& conversion

	Capture python exception message string in PyException from callbacks

	Thread safety in enum lookups

2021-03-22: 1.9.5

	Do not regulate direct smart pointers (many to one can lead to double deletion)

	Use pkg_resources of CPyCppyy, if available, to find the API include path

2021-03-17: 1.9.4

	Fix for installing into a directory that has a space in the name

	Fix empty collection printing through Cling on 64b Windows

	Fix accidental shadowing of derived class typedefs by same names in base

	Streamlined templated function lookups in namespaces

	Fix edge cases when decomposing std::function template arguments

	Enable multi-cross inheritance with non-C++ python bases

	Support Bound C++ functions as template argument

	Python functions as template arguments from __annotations__ or __cpp_name__

	Removed functions/apis deprecated in py3.9

	Improved support for older pip and different installation layouts

2021-02-15: 1.9.3

	Wheels for Linux now follow manylinux2014

	Enable direct calls of base class’ methods in Python cross-overrides

	cppyy.bind_object can now re-cast types, incl. Python cross-derived ones

	Python cross-derived objects send to (and owned by) C++ retain Python state

	Ignore, for symbol lookups, libraries that can not be reloaded

	Use PathCanonicalize when resolving paths on Windows

	Add more ways of finding the backend library

	Improve error reporting when failed to find the backend library

	Workaround for mixing std::endl in JIT-ed and compiled code on Windows 32b

	Fixed a subtle crash that arises when an invalid using is the last method

	Filter -fno-plt (coming from anaconda builds; not understood by Cling)

	Fixed memory leak in generic base __str__

2021-01-05: 1.9.2

	Added cppyy.types module for exposing cppyy builtin types

	Improve numpy integration with custom __array__ methods

	Allow operator overload resolution mixing class and global methods

	Installation fixes for PyPy when using pip

2020-11-23: 1.9.1

	Fix custom installer in pip sdist

2020-11-22: 1.9.0

	In-tree build resolving build/install order for PyPy with pyproject.toml

	std::string not converterd to str on function returns

	Cover more use cases where C string memory can be managed

	Automatic memory management of converted python functions

	Added pyinstaller hooks (https://stackoverflow.com/questions/64406727)

	Support for enums in pseudo-constructors of aggregates

	Fixes for overloaded/split-access protected members in cross-inheritance

	Support for deep, mixed, hierarchies for multi-cross-inheritance

	Added tp_iter method to low level views

2020-11-06: 1.8.6

	Fix preprocessor macro of CPyCppyy header for Windows/MSVC

2020-10-31: 1.8.5

	Fix leaks when using vector iterators on Py3/Linux

2020-10-10: 1.8.4

	std::string globals/data members no longer automatically converted to str

	New methods for std::string to allow str interchangability

	Added a decode method to std::string

	Add pythonized __contains__ to std::set

	Fix constructor generation for aggregates with static data

	Fix performance bug when using implicit conversions

	Fix memory overwrite when parsing during sorting of methods

	PyPy pip install again falls back to setup.py install

2020-09-21: 1.8.3

	Add initializer constructors for PODs and aggregates

	Use actual underlying type for enums, where possible

	Enum values remain instances of their type

	Expose enum underlying type name as __underlying and __ctype__

	Strictly follow C++ enum scoping rules

	Same enum in transparent scope refers to same type

	More detailed enum repr() printing, where possible

	Fix for (extern) explicit template instantiations in namespaces

	Throw objects from an std::tuple a life line

	Global pythonizors now always run on all classes

	Simplified iteraton over STL-like containers defining begin()/end()

2020-09-08: 1.8.2

	Add cppyy.set_debug() to enable debug output for fixing template errors

	Cover more partial template instantiation use cases

	Force template instantiation if necessary for type deduction (i.e. auto)

2020-09-01: 1.8.1

	Setup build dependencies with pyproject.toml

	Simplified flow of pointer types for callbacks and cross-derivation

	Pointer-comparing objects performs auto-cast as needed

	Add main dimension for ptr-ptr to builtin returns

	Transparant handling of ptr-ptr to instance returns

	Stricter handling of bool type in overload with int types

	Fix uint64_t template instantiation regression

	Do not filter out enum data for __dir__

	Fix lookup of interpreter-only explicit instantiations

	Fix inconsistent naming of std types with char_traits

	Further hiding of upstream code/dependencies

	Extended documentation

2020-07-12: 1.8.0

	Support mixing of Python and C++ types in global operators

	Capture Cling error messages from cppdef and include in the Python exception

	Add a cppexec method to evalutate statements in Cling’s global scope

	Support initialization of std::array<> from sequences

	Support C++17 style initialization of common STL containers

	Allow base classes with no virtual destructor (with warning)

	Support const by-value returns in Python-side method overrides

	Support for cross-language multiple inheritance of C++ bases

	Allow for pass-by-value of std::unique_ptr through move

	Reduced dependencies on upstream code

	Put remaining upstream code in CppyyLegacy namespace

2020-06-06: 1.7.1

	Expose protected members in Python derived classes

	Support for deep Python-side derived hierarchies

	Do not generate a copy ctor in the Python derived class if private

	include, c_include, and cppdef now raise exceptions on error

	Allow mixing of keywords and default values

	Fix by-ptr return of objects in Python derived classes

	Fix for passing numpy boolean array through bool*

	Fix assignment to const char* data members

	Support __restrict and __restrict__ in interfaces

	Allow passing sequence of strings through const char*[] argument

2020-04-27: 1.7.0

	Upgrade to cppyy-cling 6.20.4

	Pre-empt upstream’s propensity of making std classes etc. global

	Allow initialization of std::map from dict with the correct types

	Allow initialization of std::set from set with the correct types

	Add optional nonst/non-const selection to __overload__

	Automatic smartification of normal object passed as smartptr by value

	Fix crash when handing a by-value object to make_shared

	Fixed a few shared/unique_ptr corner cases

	Fixed conversion of std::function taking an STL class parameter

	No longer attempt auto-cast on classes without RTTI

	Fix for iter() iteration on generic STL container

2020-03-15: 1.6.2

	Respect __len__ when using bound C++ objects in boolean expressions

	Support UTF-8 encoded unicode through std::string

	Support for std::byte

	Enable assignment to function pointer variable

	Allow passing cppyy.nullptr where a function pointer is expected

	Disable copy construction into constructed object (use __assign__ instead)

	Cover more cases when to set a lifeline

	Lower priority of implicit conversion to temporary with initializer_list ctor

	Add type reduction pythonization for trimming expression template type trees

	Allow mixing std::string and str as dictionary keys

	Support C-style pointer-to-struct as array

	Support C-style enum variable declarations

	Fixed const_iterator by-ref return type regression

	Resolve enums into the actual underlying type instead of int

	Remove ‘-isystem’ from makepch flags

	Extended documentation

2020-01-04: 1.6.1

	Mapped C++ exception reporting detailing

	Mapped C++ exception cleanup bug fix

	STL vector constructor passes the CPython sequence construction

	STL vector slicing passes the CPython sequence slicing tests

	Extended documentation

2019-12-23: 1.6.0

	Classes derived from std::exception can be used as Python exceptions

	Template handling detailing (for Eigen)

	Support keyword arguments

	Added add_library_path at module level

	Extended documentation

	Fix regression bugs: #176, #179, #180, #182

2019-11-07: 1.5.7

	Allow implicit converions for move arguments

	Choose vector over initializer_list if part of the template argument list

2019-11-03: 1.5.6

	Added public C++ API for some CPyCppyy core functions (CPython only)

	Support for char16_t/char16_t* and char32_t/char32_t*

	Respect std::hash in __hash__

	Fix iteration over vector of shared_ptr

	Length checking on global variables of type ‘signed char[N]’

	Properly support overloaded templated with non-templated __setitem__

	Support for array of const char* as C-strings

	Enable type resolution of clang’s builtin __type_pack_element

	Fix for inner class type naming when it directly declares a variable

2019-10-16: 1.5.5

	Added signal -> exception support in cppyy.ll

	Support for lazily combining overloads of operator*/+-

	No longer call trivial destructors

	Support for free function unary operators

	Refactored and optimized operator==/!= usage

	Refactored converters/executors for lower memory usage

	Bug fixes in rootcling and _cppyy_generator.py

2019-09-25: 1.5.4

	operator+/* now respect C++-side associativity

	Fix potential crash if modules are reloaded

	Fix some portability issues on Mac/Windows of cppyy-cling

2019-09-15: 1.5.3

	Performance improvements

	Support for anonymous/unnamed/nested unions

	Extended documentation

2019-09-06: 1.5.2

	Added a “low level” interface (cppyy.ll) for hard-casting and ll types

	Extended support for passing ctypes arguments through ptr, ref, ptr-ptr

	Fixed crash when creating an array of instances of a scoped inner struct

	Extended documentation

2019-08-26: 1.5.1

	Upgrade cppyy-cling to 6.18.2

	Various patches to upstream’s pre-compiled header generation and use

	Instantiate templates with larger integer types if argument values require

	Improve cppyy.interactive and partially enable it on PyPy, IPython, etc.

	Let __overload__ be more flexible in signature matching

	Make list filtering of dir(cppyy.gbl) on Windows same as Linux/Mac

	Extended documentation

2019-08-18: 1.5.0

	Upgrade cppyy-cling to 6.18.0

	Allow python-derived classes to be used in templates

	Stricter template resolution and better caching/performance

	Detailed memory management for make_shared and shared_ptr

	Two-way memory management for cross-inherited objects

	Reduced memory footprint of proxy objects in most common cases

	Allow implicit conversion from a tuple of arguments

	Data set on namespaces reflected on C++ even if data not yet bound

	Generalized resolution of binary operators in wrapper generation

	Proper naming of arguments in namespaces for std::function<>

	Cover more cases of STL-liker iterators

	Allow std::vector initialization with a list of constructor arguments

	Consistent naming of __cppname__ to __cpp_name__

	Added __set_lifeline__ attribute to overloads

	Fixes to the cmake fragments for Ubuntu

	Fixes linker errors on Windows in some configurations

	Support C++ naming of typedef of bool types

	Basic views of 2D arrays of builtin types

	Extended documentation

2019-07-01 : 1.4.12

	Automatic conversion of python functions to std::function arguments

	Fix for templated operators that can map to different python names

	Fix on p3 crash when setting a detailed exception during exception handling

	Fix lookup of std::nullopt

	Fix bug that prevented certain templated constructors from being considered

	Support for enum values as data members on “enum class” enums

	Support for implicit conversion when passing by-value

2019-05-23 : 1.4.11

	Workaround for JITed RTTI lookup failures on 64b MS Windows

	Improved overload resolution between f(void*) and f<>(T*)

	Minimal support for char16_t (Windows) and char32_t (Linux/Mac)

	Do not unnecessarily autocast smart pointers

2019-05-13 : 1.4.10

	Imported several FindCppyy.cmake improvements from Camille’s cppyy-bbhash

	Fixes to cppyy-generator for unresolved templates, void, etc.

	Fixes in typedef parsing for template arguments in unknown namespaces

	Fix in templated operator code generation

	Fixed ref-counting error for instantiated template methods

2019-04-25 : 1.4.9

	Fix import error on pypy-c

2019-04-22 : 1.4.8

	std::tuple is now iterable for return assignments w/o tie

	Support for opaque handles and typedefs of pointers to classes

	Keep unresolved enums desugared and provide generic converters

	Treat int8_t and uint8_t as integers (even when they are chars)

	Fix lookup of enum values in global namespace

	Backported name mangling (esp. for static/global data lookup) for 32b Windows

	Fixed more linker problems with malloc on 64b Windows

	Consistency in buffer length calculations and c_int/c_uint handling on Windows

	Properly resolve overloaded functions with using of templates from bases

	Get templated constructor info from decl instead of name comparison

	Fixed a performance regression for free functions.

2019-04-04 : 1.4.7

	Enable initializer_list conversion on Windows as well

	Improved mapping of operator() for indexing (e.g. for matrices)

	Implicit conversion no longer uses global state to prevent recursion

	Improved overload reordering

	Fixes for templated constructors in namespaces

2019-04-02 : 1.4.6

	More transparent use of smart pointers such as shared_ptr

	Expose versioned std namespace through using on Mac

	Improved error handling and interface checking in cross-inheritance

	Argument of (const/non-const) ref types support in callbacks/cross-inheritance

	Do template argument resolution in order: reference, pointer, value

	Fix for return type deduction of resolved but uninstantiated templates

	Fix wrapper generation for defaulted arguments of private types

	Several linker fixes on 64b Windows

2019-03-25 : 1.4.5

	Allow templated free functions to be attached as methods to classes

	Allow cross-derivation from templated classes

	More support for ‘using’ declarations (methods and inner namespaces)

	Fix overload resolution for std::set::rbegin()/rend() operator==

	Fixes for bugs #61, #67

	Several pointer truncation fixes for 64b Windows

	Linker and lookup fixes for Windows

2019-03-20 : 1.4.4

	Support for ‘using’ of namespaces

	Improved support for alias templates

	Faster template lookup

	Have rootcling/genreflex respect compile-time flags (except for –std if
overridden by CLING_EXTRA_FLAGS)

	Utility to build dictionarys on Windows (32/64)

	Name mangling fixes in Cling for JITed global/static variables on Windows

	Several pointer truncation fixes for 64b Windows

2019-03-10 : 1.4.3

	Cross-inheritance from abstract C++ base classes

	Preserve ‘const’ when overriding virtual functions

	Support for by-ref (using ctypes) for function callbacks

	Identity of nested typedef’d classes matches actual

	Expose function pointer variables as std::function’s

	More descriptive printout of global functions

	Ensure that standard pch is up-to-date and that it is removed on
uninstall

	Remove standard pch from wheels on all platforms

	Add -cxxflags option to rootcling

	Install clang resource directory on Windows

License and copyright

Copyright (c) 2017-2021, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of
any required approvals from the U.S. Dept. of Energy). All rights
reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

(1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
(2) Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance of
the source code (“Enhancements”) to anyone; however, if you choose to
make your Enhancements available either publicly, or directly to
Lawrence Berkeley National Laboratory, without imposing a separate
written license agreement for such Enhancements, then you hereby grant
the following license: a non-exclusive, royalty-free perpetual license
to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such Enhancements
or derivative works thereof, in binary and source code form.

Additional copyright holders

In addition to LBNL/UC Berkeley, this package contains files copyrighted by
one or more of the following people and organizations, and licensed under
the same conditions (except for some compatible licenses as retained in the
source code):

	CERN

	Lucio Asnaghi

	Simone Bacchio

	Robert Bradshaw

	Ellis Breen

	Antonio Cuni

	Aditi Dutta

	Shaheed Haque

	Jonsomi

	Max Kolin

	Alvaro Moran

	Tarmo Pikaro

	Matti Picus

	Camille Scott

	Toby StClere-Smithe

	Stefan Wunsch

Conda-forge recipes were provided by Julian Rueth and Isuru Fernando.

External code

The create_src_directory.py script will pull in ROOT and LLVM sources, which
are licensed differently:

	LLVM: distributed under University of Illinois/NCSA Open Source License

	https://opensource.org/licenses/UoI-NCSA.php

	ROOT: distributed under LGPL 2.1

	https://root.cern.ch/license

The ROOT and LLVM/Clang codes are modified/patched, as part of the build
process.

Installation

cppyy requires a (modern) C++ compiler.
When installing through conda-forge [https://anaconda.org/conda-forge/cppyy], conda will install the compiler
for you, to match the other conda-forge packages.
When using pip and the wheels from PyPI [https://pypi.python.org/pypi/cppyy/], you minimally need gcc5,
clang5, or MSVC’17.
When installing from source, the only requirement is full support for C++11
(e.g. minimum gcc 4.8.1 on GNU/Linux), but older compilers than the ones
listed for the wheels have not been tested.

With CPython on Linux or MacOS, probably by far the easiest way to install
cppyy, is through conda-forge on Anaconda [https://www.anaconda.com/distribution/] (or miniconda [https://docs.conda.io/en/latest/miniconda.html]).
A Windows recipe for conda is not available yet, but is forthcoming, so
use pip for that platform for now (see below).
PyPI always has the authoritative releases (conda-forge pulls the sources
from there), so conda-forge may sometimes lag PyPI.
If you absolutely need the latest release, use PyPI or consider
building from source.

To install using conda, create and/or activate your (new) work environment
and install from the conda-forge channel:

$ conda create -n WORK
$ conda activate WORK
(WORK) $ conda install -c conda-forge cppyy
(WORK) [current compiler] $

To install with pip through PyPI [https://pypi.python.org/pypi/cppyy/], it is recommend to use
virtualenv [https://pypi.python.org/pypi/virtualenv] (or module venv [https://docs.python.org/3/library/venv.html] for modern pythons).
The use of virtualenv prevents pollution of any system directories and allows
you to wipe out the full installation simply by removing the virtualenv
created directory (“WORK” in this example):

$ virtualenv WORK
$ source WORK/bin/activate
(WORK) $ python -m pip install cppyy
(WORK) $

If you use the --user option to pip and use pip directly on the
command line, instead of through python, make sure that the PATH
envar points to the bin directory that will contain the installed entry
points during the installation, as the build process needs them.
You may also need to install wheel first if you have an older version of
pip and/or do not use virtualenv (which installs wheel by default).
Example:

$ python -m pip install wheel --user
$ PATH=$HOME/.local/bin:$PATH python -m pip install cppyy --user

Wheels on PyPI

Wheels for the backend (cppyy-cling) are available on PyPI for GNU/Linux,
MacOS-X, and MS Windows (both 32b and 64b).
The Linux wheels are built for manylinux2014, but with the dual ABI enabled.
The wheels for MS Windows were build with MSVC Community Edition 2017.

There are no wheels for the CPyCppyy and cppyy packages, to allow
the C++ standard chosen to match the local compiler.

pip with conda

Although installing cppyy through conda-forge [https://anaconda.org/conda-forge/cppyy] is recommended, it is
possible to build/install with pip under Anaconda/miniconda.

Typical Python extensions only expose a C interface for use through the
Python C-API, requiring only calling conventions (and the Python C-API
version, of course) to match to be binary compatible.
Here, cppyy differs because it exposes C++ APIs: it thus requires a C++
run-time that is ABI compatible with the C++ compiler that was used during
build-time.

A set of modern compilers is available through conda-forge, but are only
intended for use with conda-build.
In particular, the corresponding run-time is installed (for use through rpath
when building), but not set up.
That is, the conda compilers are added to PATH but not their libraries
to LD_LIBRARY_PATH (Mac, Linux; PATH for both on MS Windows).
Thus, you get the conda compilers and your system libraries mixed in the same
build environment, unless you set LD_LIBRARY_PATH (PATH on Windows)
explicitly, e.g. by adding $CONDA_PREFIX/lib.
Note that the conda documentation recommends against this.
Furthermore, the compilers from conda-forge are not vanilla distributions:
header files have been modified, which can can lead to parsing problems if
your system C library does not support C11, for example.

Nevertheless, with the above caveats, if your system C/C++ run-times are new
enough, the following can be made to work:

$ conda create -n WORK
$ conda activate WORK
(WORK) $ conda install python
(WORK) $ conda install -c conda-forge compilers
(WORK) [current compiler] $ python -m pip install cppyy

C++ standard with pip

The C++17 standard is the default for Mac and Linux (both PyPI and
conda-forge); but it is C++14 for MS Windows (compiler limitation).
When installing from PyPI using pip, you can control the standard
selection by setting the STDCXX envar to ‘17’, ‘14’, or ‘11’ (for Linux,
the backend does not need to be recompiled).
Note that the build will lower your choice if the compiler used does not
support a newer standard.

Install from source

To build an existing release from source, tell pip to not download any
binary wheels.
Build-time only dependencies are cmake (for general build), python
(obviously, but also for LLVM), and a modern C++ compiler (one that supports
at least C++11).
Use the envar STDCXX to control the C++ standard version; MAKE to
change the make command, MAKE_NPROCS to control the maximum number of
parallel jobs allowed, and VERBOSE=1 to see full build/compile commands.
Example (using --verbose to see pip progress):

$ STDCXX=17 MAKE_NPROCS=32 pip install --verbose cppyy --no-binary=cppyy-cling

Compilation of the backend, which contains a customized version of
Clang/LLVM, can take a long time, so by default the setup script will use all
cores (x2 if hyperthreading is enabled).
Once built, however, the wheel of cppyy-cling is reused by pip for all
versions of CPython and for PyPy, thus the long compilation is needed only
once for all different versions of Python on the same machine.

See the section on repos for more
details/options.

PyPy

PyPy 5.7 and 5.8 have a built-in module cppyy.
You can still install the cppyy package, but the built-in module takes
precedence.
To use cppyy, first import a compatibility module:

$ pypy
[PyPy 5.8.0 with GCC 5.4.0] on linux2
>>>> import cppyy_compat, cppyy
>>>>

You may have to set LD_LIBRARY_PATH appropriately if you get an
EnvironmentError (it will indicate the needed directory).

Note that your python interpreter (whether CPython or pypy-c) may not have
been linked by the C++ compiler.
This can lead to problems during loading of C++ libraries and program shutdown.
In that case, re-linking is highly recommended.

Very old versions of PyPy (5.6.0 and earlier) have a built-in cppyy based
on Reflex [https://root.cern.ch/how/how-use-reflex], which is less feature-rich and no longer supported.
However, both the distribution utilities and user-facing
Python codes are very backwards compatible, making migration straightforward.

Precompiled header

For performance reasons (reduced memory and CPU usage), a precompiled header
(PCH) of the system and compiler header files will be installed or, failing
that, generated on startup.
Obviously, this PCH is not portable and should not be part of any wheel.

Some compiler features, such as AVX, OpenMP, fast math, etc. need to be
active during compilation of the PCH, as they depend both on compiler flags
and system headers (for intrinsics, or API calls).
You can control compiler flags through the EXTRA_CLING_ARGS envar and thus
what is active in the PCH.
In principle, you can also change the C++ language standard by setting the
appropriate flag on EXTRA_CLING_ARGS and rebuilding the PCH.
However, if done at this stage, that disables some automatic conversion for
C++ types that were introduced after C++11 (such as string_view and
optional).

If you want multiple PCHs living side-by-side, you can generate them
yourself (note that the given path must be absolute):

>>> import cppyy_backend.loader as l
>>> l.set_cling_compile_options(True) # adds defaults to EXTRA_CLING_ARGS
>>> install_path = '/full/path/to/target/location/for/PCH'
>>> l.ensure_precompiled_header(install_path)

You can then select the appropriate PCH with the CLING_STANDARD_PCH envar:

$ export CLING_STANDARD_PCH=/full/path/to/target/location/for/PCH/allDict.cxx.pch

Or disable it completely by setting that envar to “none”.

Note

Without the PCH, the default C++ standard will be the one with which
cppyy-cling was built.

 Trying it out

Trying it out

This is a basic guide to try cppyy and see whether it works for you.
Large code bases will benefit from more advanced features such as
pythonizations for a cleaner interface to clients;
precompiled modules for faster parsing and reduced memory usage;
“dictionaries” to package locations and manage
dependencies; and mapping files for automatic, lazy, loading.
You can, however, get very far with just the basics and it may even be
completely sufficient for small packages with fewer classes.

cppyy works by parsing C++ definitions through cling, generating tiny
wrapper codes to honor compile-time features and create standardized
interfaces, then compiling/linking those wrappers with the clang JIT.
It thus requires only those two ingredients: C++ definitions and
linker symbols.
All cppyy uses, the basic and the more advanced, are variations on the
theme of bringing these two together at the point of use.

Definitions typically live in header files and symbols in libraries.
Headers can be loaded with cppyy.include and libraries with the
cppyy.load_library call.
Loading the header is sufficient to start exploring, with cppyy.gbl the
starting point of all things C++, while the linker symbols are only needed at
the point of first use.

Here is an example using the zlib [https://en.wikipedia.org/wiki/Zlib] library, which is likely available on
your system:

>>> import cppyy
>>> cppyy.include('zlib.h') # bring in C++ definitions
>>> cppyy.load_library('libz') # load linker symbols
>>> cppyy.gbl.zlibVersion() # use a zlib API
'1.2.11'
>>>

Since header files can include other header files, it is easy to aggregate
all relevant ones into a single header to include.
If there are project-specific include paths, you can add those paths through
cppyy.add_include_path.
If a header is C-only and not set for use with C++, use cppyy.c_include,
which adds extern "C" around the header.

Library files can be aggregated by linking all relevant ones to a single
library to load.
Using the linker for this purpose allows regular system features such as
rpath and envars such as LD_LIBRARY_PATH to be applied as usual.
Note that any mechanism that exposes the library symbols will work.
For example, you could also use the standard module ctypes through
ctypes.CDLL with the ctypes.RTLD_GLOBAL option.

To explore, start from cppyy.gbl to access your namespaces, classes,
functions, etc., etc. directly; or use python’s dir (or tab-completion)
to see what is available.
Use python’s help to see list the methods and data members of classes and
see the interfaces of functions.

Now try this out for some of your own headers, libraries, and APIs!

 Example repos

Example repos

The detailed feature lists have examples that work using a header file, and
there is the tutorial [https://github.com/wlav/cppyy/blob/master/doc/tutorial/CppyyTutorial.ipynb] that shows mixing of C++ and Python interactively.
The cookie cutter [https://github.com/camillescott/cookiecutter-cppyy-cmake] repo provides a good cmake based example.
More complete examples that show packaging include these repos (in
alphabetical order):

	bgfx-python [https://github.com/fbertola/bgfx-python]

	cppyy-bbhash [https://github.com/camillescott/cppyy-bbhash]

	dnpy [https://github.com/txjmb/dnpy]

	PyEtaler [https://github.com/etaler/PyEtaler]

	pyflatsurf [https://github.com/flatsurf/flatsurf]

	gco-cppyy [https://github.com/agoose77/gco-cppyy]

	gmpxxyy [https://github.com/flatsurf/gmpxxyy]

	cppyy-knearestneighbors [https://github.com/jclay/cppyy-knearestneighbors-example]

	linear_algebra [https://github.com/pressureless/linear_algebra]

	lyncs [https://github.com/sbacchio/lyncs]

	popsicle [https://github.com/kunitoki/popsicle]

	libsemigroups_cppyy [https://github.com/libsemigroups/libsemigroups_cppyy]

	SopraClient [https://github.com/SoPra-Team-17/Client]

	python-vspline [https://bitbucket.org/kfj/python-vspline]

 Bugs and feedback

Bugs and feedback

Please report bugs, ask questions, request improvements, and post general
comments on the issue tracker [https://github.com/wlav/cppyy/issues] or on stack overflow [https://stackoverflow.com/questions/tagged/cppyy] (marked with the
“cppyy” tag).

 Basic types

Basic types

C++ has a far richer set of builtin types than Python.
Most Python code can remain relatively agnostic to that, and cppyy
provides automatic conversions as appropriate.
On the other hand, Python builtin types such as lists and maps are far
richer than any builtin types in C++.
These are mapped to their Standard Template Library equivalents instead.

The C++ code used for the examples below can be found
here, and it is assumed that that code is
loaded before running any of the example code snippets.
Download it, save it under the name features.h, and simply include it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

Builtins

The selection of builtin data types varies greatly between Python and C++.
Where possible, builtin data types map onto the expected equivalent Python
types, with the caveats that there may be size differences, different
precision or rounding, etc.
For example, a C++ float is returned as a Python float, which is in
fact a C++ double.
If sizes allow, conversions are automatic.
For example, a C++ unsigned int becomes a Python2 long or Python3
int, but unsigned-ness is still honored:

>>> cppyy.gbl.gUint
0L
>>> type(cppyy.gbl.gUint)
<type 'long'>
>>> cppyy.gbl.gUint = -1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot convert negative integer to unsigned
>>>

On some platforms, 8-bit integer types such as int8_t and uint8_t are
represented as char types.
For consistency, these are mapped onto Python int.

Some types are builtin in Python, but (STL) classes in C++.
Examples are str vs. std::string (see also the
Strings section) and complex vs. std::complex.
These classes have been pythonized to behave the same wherever possible.
For example, string comparison work directly, and std::complex has
real and imag properties:

>>> c = cppyy.gbl.std.complex['double'](1, 2)
>>> c
(1+2j)
>>> c.real, c.imag
(1.0, 2.0)
>>> s = cppyy.gbl.std.string("aap")
>>> type(s)
<class cppyy.gbl.std.string at 0x7fa75edbf8a0>
>>> s == "aap"
True
>>>

To pass an argument through a C++ char (signed or unsigned) use a Python
string of size 1.
In many cases, the explicit C types from module ctypes can also be used,
but that module does not have a public API (for type conversion or otherwise),
so support is somewhat limited.

There are automatic conversions between C++’s std::vector and Python’s
list and tuple, where possible, as they are often used in a similar
manner.
These datatypes have completely different memory layouts, however, and the
std::vector requires that all elements are of the same type and laid
out consecutively in memory.
Conversion thus requires type checks, memory allocation, and copies.
This can be rather expensive.
See the section on STL.

Arrays

Builtin arrays are supported through arrays from module array (or any
other builtin-type array that implements the Python buffer interface, such
as numpy arrays) and a low-level view type from cppyy for returns and
variable access (that implements the buffer interface as well).
Out-of-bounds checking is limited to those cases where the size is known at
compile time.
Example:

>>> from cppyy.gbl import Concrete
>>> from array import array
>>> c = Concrete()
>>> c.array_method(array('d', [1., 2., 3., 4.]), 4)
1 2 3 4
>>> c.m_data[4] # static size is 4, so out of bounds
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: buffer index out of range
>>>

Arrays of arrays are supported through the C++ low-level view objects.
This only works well if sizes are known at compile time or can be inferred.
If sizes are not known, the size is set to a large integer (depending on the
array element size) to allow access.
It is then up to the developer not to access the array out-of-bounds.
There is limited support for arrays of instances, but those should be avoided
in C++ anyway:

>>> cppyy.cppdef('std::string str_array[3][2] = {{"aa", "bb"}, {"cc", "dd"}, {"ee", "ff"}};')
True
>>> type(cppyy.gbl.str_array[0][1])
<class cppyy.gbl.std.string at 0x7fd650ccb650>
>>> cppyy.gbl.str_array[0][1]
'bb'
>>> cppyy.gbl.str_array[4][0]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: tuple index out of range
>>>

Pointers

When the C++ code takes a pointer or reference type to a specific builtin
type (such as an unsigned int for example), then types need to match
exactly.
cppyy supports the types provided by the standard modules ctypes and
array for those cases.
Example of using a reference to builtin:

>>> from ctypes import c_uint
>>> u = c_uint(0)
>>> c.uint_ref_assign(u, 42)
>>> u.value
42
>>>

For objects, an object, a pointer to an object, and a smart pointer to an
object are represented the same way, with the necessary (de)referencing
applied automatically.
Pointer variables are also bound by reference, so that updates on either the
C++ or Python side are reflected on the other side as well.

Enums

Named, anonymous, and class enums are supported.
The Python-underlying type of an enum is implementation dependent and may even
be different for different enums on the same compiler.
Typically, however, the types are int or unsigned int, which
translates to Python’s int or long on Python2 or class int on
Python3.
Separate from the underlying, all enums have their own Python type to allow
them to be used in template instantiations:

>>> from cppyy.gbl import kBanana # classic enum, globally available
>>> print(kBanana)
29
>>> cppyy.gbl.EFruit
<class '__main__.EFruit'>
>>> print(cppyy.gbl.EFruit.kApple)
78
>>> cppyy.gbl.E1 # C++11 class enum, scoped
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: <namespace cppyy.gbl at 0x7ff2766a4af0> has no attribute 'E1'.
>>> cppyy.gbl.NamedClassEnum.E1
42
>>>

 Strings/Unicode

Strings/Unicode

Both Python and C++ have core types to represent text and these are expected
to be freely interchangeable.
cppyy makes it easy to do just that for the most common cases, while
allowing customization where necessary to cover the full range of diverse use
cases (such as different codecs).
In addition to these core types, there is a range of other character types,
from const char* and std::wstring to bytes, that see much less
use, but are also fully supported.

std::string

The C++ core type std::string is considered the equivalent of Python’s
str, even as purely implementation-wise, it is more akin to bytes:
as a practical matter, a C++ programmer would use std::string where a
Python developer would use str (and vice versa), not bytes.

A Python str is unicode, however, whereas an std::string is character
based, thus conversions require encoding or decoding.
To allow for different encodings, cppyy defers implicit conversions
between the two types until forced, at which point it will default to seeing
std::string as ASCII based and str to use the UTF-8 codec.
To support this, the bound std::string has been pythonized to allow it to
be a drop-in for a range of uses as appropriate within the local context.

In particular, it is sometimes necessary (e.g. for function arguments that
take a non-const reference or a pointer to non-const std::string
variables), to use an actual std::string instance to allow in-place
modifications.
The pythonizations then allow their use where str is expected.
For example:

>>> cppyy.cppexec("std::string gs;")
True
>>> cppyy.gbl.gs = "hello"
>>> type(cppyy.gbl.gs) # C++ std::string type
<class cppyy.gbl.std.string at 0x7fbb02a89880>
>>> d = {"hello": 42} # dict filled with str
>>> d[cppyy.gbl.gs] # drop-in use of std::string -> str
42
>>>

To handle codecs other than UTF-8, the std::string pythonization adds a
decode method, with the same signature as the equivalent method of
bytes.
If it is known that a specific C++ function always returns an std::string
representing unicode with a codec other than UTF-8, it can in turn be
explicitly pythonized to do the conversion with that codec.

std::wstring

C++’s “wide” string, std::wstring, is based on wchar_t, a character
type that is not particularly portable as it can be 2 or 4 bytes in size,
depending on the platform.
cppyy supports std::wstring directly, using the wchar_t array
conversions provided by Python’s C-API.

const char*

The C representation of text, const char*, is problematic for two
reasons: it does not express ownership; and its length is implicit, namely up
to the first occurrence of '\0'.
The first can, up to an extent, be ameliorated: there are a range of cases
where ownership can be inferred.
In particular, if the C string is set from a Python str, it is the latter
that owns the memory and the bound proxy of the former that in turn owns the
(unconverted) str instance.
However, if the const char*’s memory is allocated in C/C++, memory
management is by necessity fully manual.
Length, on the other hand, can only be known in the case of a fixed array.
However even then, the more common case is to use the fixed array as a
buffer, with the actual string still only extending up to the '\0' char,
so that is assumed.
(C++’s std::string suffers from none of these issues and should always be
preferred when you have a choice.)

char*

The C representation of a character array, char*, has all the problems of
const char*, but in addition is often used as “data array of 8-bit int”.

character types

cppyy directly supports the following character types, both as single
variables and in array form: char, signed char, unsigned char,
wchar_t, char16_t, and char32_t.

 Classes

Classes

Both Python and C++ support object-oriented code through classes and thus
it is logical to expose C++ classes as Python ones, including the full
inheritance hierarchy.

The C++ code used for the examples below can be found
here, and it is assumed that that code is
loaded at the start of any session.
Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

Basics

All bound C++ code starts off from the global C++ namespace, represented in
Python by gbl.
This namespace, as any other namespace, is treated as a module after it has
been loaded.
Thus, we can import C++ classes that live underneath it:

>>> from cppyy.gbl import Concrete
>>> Concrete
<class cppyy.gbl.Concrete at 0x2058e30>
>>>

Placing classes in the same structure as imposed by C++ guarantees identity,
even if multiple Python modules bind the same class.
There is, however, no necessity to expose that structure to end-users: when
developing a Python package that exposes C++ classes through cppyy,
consider cppyy.gbl an “internal” module, and expose the classes in any
structure you see fit.
The C++ names will continue to follow the C++ structure, however, as is needed
for e.g. pickling:

>>> from cppyy.gbl import Namespace
>>> Concrete == Namespace.Concrete
False
>>> n = Namespace.Concrete.NestedClass()
>>> type(n)
<class cppyy.gbl.Namespace.Concrete.NestedClass at 0x22114c0>
>>> type(n).__name__
NestedClass
>>> type(n).__module__
cppyy.gbl.Namespace.Concrete
>>> type(n).__cpp_name__
Namespace::Concrete::NestedClass
>>>

Constructors

Python and C++ both make a distinction between allocation (__new__ in
Python, operator new in C++) and initialization (__init__ in Python,
the constructor call in C++).
When binding, however, there comes a subtle semantic difference: the Python
__new__ allocates memory for the proxy object only, and __init__
initializes the proxy by creating or binding the C++ object.
Thus, no C++ memory is allocated until __init__.
The advantages are simple: the proxy can now check whether it is initialized,
because the pointer to C++ memory will be NULL if not; it can be a reference
to another proxy holding the actual C++ memory; and it can now transparently
implement a C++ smart pointer.
If __init__ is never called, eg. when a call to the base class
__init__ is missing in a derived class override, then accessing the proxy
will result in a Python ReferenceError exception.

Destructors

There should not be a reason to call a destructor directly in CPython, but
PyPy uses a garbage collector and that makes it sometimes useful to destruct
a C++ object where you want it destroyed.
Destructors are accessible through the conventional __destruct__ method.
Accessing an object after it has been destroyed will result in a Python
ReferenceError exception.

Inheritance

The output of help shows the inheritance hierarchy, constructors, public
methods, and public data.
For example, Concrete inherits from Abstract and it has
a constructor that takes an int argument, with a default value of 42.
Consider:

>>> from cppyy.gbl import Abstract
>>> issubclass(Concrete, Abstract)
True
>>> a = Abstract()
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: cannot instantiate abstract class 'Abstract'
>>> c = Concrete()
>>> isinstance(c, Concrete)
True
>>> isinstance(c, Abstract)
True
>>> d = Concrete(13)
>>>

Just like in C++, interface classes that define pure virtual methods, such
as Abstract does, can not be instantiated, but their concrete
implementations can.
As the output of help showed, the Concrete constructor takes
an integer argument, that by default is 42.

Cross-inheritance

Python classes that derive from C++ classes can override virtual methods as
long as those methods are declared on class instantiation (adding methods to
the Python class after the fact will not provide overrides on the C++ side,
only on the Python side).
Example:

>>> from cppyy.gbl import Abstract, call_abstract_method
>>> class PyConcrete(Abstract):
... def abstract_method(self):
... return "Hello, Python World!\n"
... def concrete_method(self):
... pass
...
>>> pc = PyConcrete()
>>> call_abstract_method(pc)
Hello, Python World!
>>>

Note that it is not necessary to provide a constructor (__init__), but
if you do, you must call the base class constructor through the super
mechanism.

Multiple cross-inheritance

Python requires that any multiple inheritance (also in pure Python) has an
unambiguous method resolution order (mro), including for classes and thus
also for meta-classes.
In Python2, it was possible to resolve any mro conflicts automatically, but
meta-classes in Python3, although syntactically richer, have functionally
become far more limited.
In particular, the mro is checked in the builtin class builder, instead of
in the meta-class of the meta-class (which in Python3 is the builtin type
rather than the meta-class itself as in Python2, another limitation, and
which actually checks the mro a second time for no reason).
The upshot is that a helper is required (cppyy.multi) to resolve the mro
to support Python3.
The helper is written to also work in Python2.
Example:

>>> class PyConcrete(cppyy.multi(cppyy.gbl.Abstract1, cppyy.gbl.Abstract2)):
... def abstract_method1(self):
... return "first message"
... def abstract_method2(self):
... return "second message"
...
>>> pc = PyConcrete()
>>> cppyy.gbl.call_abstract_method1(pc)
first message
>>> cppyy.gbl/call_abstract_method2(pc)
second message
>>>

Contrary to multiple inheritance in Python, in C++ there are no two separate
instances representing the base classes.
Thus, a single __init__ call needs to construct and initialize all bases,
rather than calling __init__ on each base independently.
To support this syntax, the arguments to each base class should be grouped
together in a tuple.
If there are no arguments, provide an empty tuple (or omit them altogether,
if these arguments apply to the right-most base(s)).

Methods

C++ methods are represented as Python ones: these are first-class objects and
can be bound to an instance.
If a method is virtual in C++, the proper concrete method is called, whether
or not the concrete class is bound.
Similarly, if all classes are bound, the normal Python rules apply:

>>> c.abstract_method()
called Concrete::abstract_method
>>> c.concrete_method()
called Concrete::concrete_method
>>> m = c.abstract_method
>>> m()
called Concrete::abstract_method
>>>

Data members

Data members are implemented as properties, using descriptors.
For example, The Concrete instances have a public data member m_int:

>>> c.m_int, d.m_int
(42, 13)
>>>

Note however, that the data members are typed: setting them results in a
memory write on the C++ side.
This is different in Python, where references are replaced, and thus any
type will do:

>>> c.m_int = 3.14 # a float does not fit in an int
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: int/long conversion expects an integer object
>>> c.m_int = int(3.14)
>>> c.m_int, d.m_int
(3, 13)
>>>

Private and protected data members are not accessible, contrary to Python
data members, and C++ const-ness is respected:

>>> c.m_const_int = 71 # declared 'const int' in class definition
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: assignment to const data not allowed
>>>

Static C++ data members act like Python class-level data members.
They are also represented by property objects and both read and write access
behave as expected:

>>> Concrete.s_int # access through class
321
>>> c.s_int = 123 # access through instance
>>> Concrete.s_int
123

Operators

Many C++ operators can be mapped to their Python equivalent.
When the operators are part of the C++ class definition, this is done
directly.
If they are defined globally, the lookup is done lazily (ie. can resolve
after the class definition by loading the global definition or by defining
them interactively).
Some operators have no Python equivalent and are instead made available by
mapping them onto the following conventional functions:

	C++

	Python

	operator=

	__assign__

	operator++(int)

	__postinc__

	operator++()

	__preinc__

	operator--(int)

	__postdec__

	operator--()

	__predec__

	unary operator*

	__deref__

	operator->

	__follow__

	operator&&

	__dand__

	operator||

	__dor__

	operator,

	__comma__

Here is an example of operator usage, using STL iterators directly (note that
this is not necessary in practice as STL and STL-like containers work
transparently in Python for-loops):

>>> v = cppyy.gbl.std.vector[int](range(3))
>>> i = v.begin()
>>> while (i != v.end()):
... print(i.__deref__())
... _ = i.__preinc__()
...
0
1
2
>>>

Overridden operator new and operator delete, as well as their array
equivalents, are not accessible but will be called as appropriate.

Templates

Templated classes are instantiated using square brackets.
(For backwards compatibility reasons, parentheses work as well.)
The instantiation of a templated class yields a class, which can then
be used to create instances.

Templated classes need not pre-exist in the bound code, just their
declaration needs to be available.
This is true for e.g. all of STL:

>>> cppyy.gbl.std.vector # template metatype
<cppyy.Template 'std::vector' object at 0x7fffed2674d0>
>>> cppyy.gbl.std.vector(int) # instantiates template -> class
<class cppyy.gbl.std.vector<int> at 0x1532190>
cppyy.gbl.std.vector[int]() # instantiates class -> object
<cppyy.gbl.std.vector<int> object at 0x2341ec0>
>>>

The template arguments may be actual types or their names as a string,
whichever is more convenient.
Thus, the following are equivalent:

>>> from cppyy.gbl.std import vector
>>> type1 = vector[Concrete]
>>> type2 = vector['Concrete']
>>> type1 == type2
True
>>>

Typedefs

Typedefs are simple python references to the actual classes to which
they refer.

>>> from cppyy.gbl import Concrete_t
>>> Concrete is Concrete_t
True
>>>

 Functions

Functions

C++ functions are first-class objects in Python and can be used wherever
Python functions can be used, including for dynamically constructing
classes.

The C++ code used for the examples below can be found
here, and it is assumed that that code is
loaded at the start of any session.
Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

Function argument type conversions follow the expected rules, with implicit
conversions allowed, including between Python builtin types and STL types,
but it is rather more efficient to make conversions explicit.

Free functions

All bound C++ code starts off from the global C++ namespace, represented in
Python by gbl.
This namespace, as any other namespace, is treated as a module after it has
been loaded.
Thus, we can directly import C++ functions from it and other namespaces that
themselves may contain more functions.
All lookups on namespaces are done lazily, thus if loading more headers bring
in more functions (incl. new overloads), these become available dynamically.

>>> from cppyy.gbl import global_function, Namespace
>>> global_function == Namespace.global_function
False
>>> from cppyy.gbl.Namespace import global_function
>>> global_function == Namespace.global_function
True
>>> from cppyy.gbl import global_function
>>>

Free functions can be bound to a class, following the same rules as apply to
Python functions: unless marked as static, they will turn into member
functions when bound to an instance, but act as static functions when called
through the class.
Consider this example:

>>> from cppyy.gbl import Concrete, call_abstract_method
>>> c = Concrete()
>>> Concrete.callit = call_abstract_method
>>> Concrete.callit(c)
called Concrete::abstract_method
>>> c.callit()
called Concrete::abstract_method
>>> Concrete.callit = staticmethod(call_abstract_method)
>>> c.callit()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: void ::call_abstract_method(Abstract* a) =>
 TypeError: takes at least 1 arguments (0 given)
>>> c.callit(c)
called Concrete::abstract_method
>>>

Static methods

Class static functions are treated the same way as free functions, except
that they are accessible either through the class or through an instance,
just like Python’s staticmethod.

Methods

For class methods, see the methods section under
the classes heading.

Operators

Globally defined operators are found lazily (ie. can resolve after the class
definition by loading the global definition or by defining them interactively)
and are mapped onto a Python equivalent when possible.
See the operators section under the
classes heading for more details.

Templates

Templated functions (and class methods) can either be called using square
brackets ([]) to provide the template arguments explicitly, or called
directly, through automatic lookup.
The template arguments may either be a string of type names (this results
in faster code, as it needs no further lookup/verification) or a list of
the actual types to use (which tends to be more convenient).

Note: the Python type float maps to the C++ type float, even
as Python uses a C double as its internal representation.
The motivation is that doing so makes the Python code more readable (and
Python may anyway change its internal representation in the future).
The same has been true for Python int, which used to be a C long
internally.

Examples, using multiply from features.h:

>>> mul = cppyy.gbl.multiply
>>> mul(1, 2)
2
>>> mul(1., 5)
5.0
>>> mul[int](1, 1)
1
>>> mul[int, int](1, 1)
1
>>> mul[int, int, float](1, 1)
1.0
>>> mul[int, int](1, 'a')
 TypeError: Template method resolution failed:
 none of the 6 overloaded methods succeeded. Full details:
 int ::multiply(int a, int b) =>
 TypeError: could not convert argument 2 (int/long conversion expects an integer object)
 ...
 Failed to instantiate "multiply(int,std::string)"
>>> mul['double, double, double'](1., 5)
5.0
>>>

Overloading

C++ supports overloading, whereas Python supports “duck typing”, thus C++
overloads have to be selected dynamically in response to the available
“ducks”.
This may lead to additional lookups or template instantiations.
However, pre-existing methods (incl. auto-instantiated methods) are always
preferred over new template instantiations:

>>> global_function(1.) # selects 'double' overload
2.718281828459045
>>> global_function(1) # selects 'int' overload
42
>>>

C++ does a static dispatch at compile time based on the argument types.
The dispatch is a selection among overloads (incl. templates) visible at that
point in the translation unit.
Bound C++ in Python does a dynamic dispatch: it considers all overloads
visible globally at that point in the execution.
Because the dispatch is fundamentally different (albeit in line with the
expectation of the respective languages), differences can occur.
Especially if overloads live in different header files and are only an
implicit conversion apart, or if types that have no direct equivalent in
Python, such as e.g. unsigned short, are used.

There are two rounds to finding an overload.
If all overloads fail argument conversion during the first round, where
implicit conversions are not allowed, _and_ at least one converter has
indicated that it can do implicit conversions, a second round is tried.
In this second round, implicit conversions are allowed, including class
instantiation of temporaries.
During some template calls, implicit conversions are not allowed at all, to
make sure new instantiations happen instead.

In the rare occasion where the automatic overload selection fails, the
__overload__ function can be called to access a specific overload
matching a specific function signature:

>>> global_function.__overload__('double')(1) # int implicitly converted
2.718281828459045
>>>

An optional boolean second parameter can be used to restrict the selected
method to be const (if True) or non-const (if False).

Note that __overload__ only does a lookup; it performs no (implicit)
conversions and the types in the signature to match should be the fully
resolved ones (no typedefs).
To see all available overloads, use help() or look at the __doc__
string of the function:

>>> print(global_function.__doc__)
int ::global_function(int)
double ::global_function(double)
>>>

For convenience, the :any: signature, allows matching any signature, for
example to reduce the general method to the const (or non-const) overload
only, use:

MyClass.some_method = MyClass.some_method.__overload__(':any:', True)

Return values

Most return types are readily amenable to automatic memory management: builtin
returns, by-value returns, (const-)reference returns to internal data, smart
pointers, etc.
The important exception is pointer returns.

A function that returns a pointer to an object over which Python should claim
ownership, should have its __creates__ flag set through its
pythonization.
Well-written APIs will have clear clues in their naming convention about the
ownership rules.
For example, functions called New..., Clone..., etc. can be expected
to return freshly allocated objects.
A simple name-matching in the pythonization then makes it simple to mark all
these functions as creators.

The return values are auto-casted.

*args and **kwds

C++ default arguments work as expected.
Keywords, however, are a Python language feature that does not exist in C++.
Many C++ function declarations do have formal arguments, but these are not
part of the C++ interface (the argument names are repeated in the definition,
making the names in the declaration irrelevant: they do not even need to be
provided).
Thus, although cppyy will map keyword argument names to formal argument
names from the C++ declaration, use of this feature is not recommended unless
you have a guarantee that the names in C++ the interface are maintained.
Example:

>>> from cppyy.gbl import Concrete
>>> c = Concrete() # uses default argument
>>> c.m_int
42
>>> c = Concrete(13) # uses provided argument
>>> c.m_int
13
>>> args = (27,)
>>> c = Concrete(*args) # argument pack
>>> c.m_int
27
>>> c = Concrete(n=17)
>>> c.m_int
17
>>> kwds = {'n' : 18}
>>> c = Concrete(**kwds)
>>> c.m_int
18
>>>

Callbacks

Python callables (functions/lambdas/instances) can be passed to C++ through
function pointers and/or std::function.
This involves creation of a temporary wrapper, which has the same life time as
the Python callable it wraps, so the callable needs to be kept alive on the
Python side if the C++ side stores the callback.
Example:

>>> from cppyy.gbl import call_int_int
>>> print(call_int_int.__doc__)
int ::call_int_int(int(*)(int,int) f, int i1, int i2)
>>> def add(a, b):
... return a+b
...
>>> call_int_int(add, 3, 7)
7
>>> call_int_int(lambda x, y: x*y, 3, 7)
21
>>>

 Type conversions

Type conversions

Most type conversions are done automatically, e.g. between Python str
and C++ std::string and const char*, but low-level APIs exist to
perform explicit conversions.

The C++ code used for the examples below can be found
here, and it is assumed that that code is
loaded at the start of any session.
Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

Auto-casting

Object pointer returns from functions provide the most derived class known
(i.e. exposed in header files) in the hierarchy of the object being returned.
This is important to preserve object identity as well as to make casting,
a pure C++ feature after all, superfluous.
Example:

>>> from cppyy.gbl import Abstract, Concrete
>>> c = Concrete()
>>> Concrete.show_autocast.__doc__
'Abstract* Concrete::show_autocast()'
>>> d = c.show_autocast()
>>> type(d)
<class '__main__.Concrete'>
>>>

As a consequence, if your C++ classes should only be used through their
interfaces, then no bindings should be provided to the concrete classes
(e.g. by excluding them using a selection file).
Otherwise, more functionality will be available in Python than in C++.

Sometimes, however, full control over a cast is needed.
For example, if the instance is bound by another tool or even a 3rd party,
hand-written, extension library.
Assuming the object supports the PyCapsule or CObject abstraction,
then a C++-style reinterpret_cast (i.e. without implicitly taking offsets
into account), can be done by taking and rebinding the address of an
object:

>>> from cppyy import addressof, bind_object
>>> e = bind_object(addressof(d), Abstract)
>>> type(e)
<class '__main__.Abstract'>
>>>

Operators

If conversion operators are defined in the C++ class and a Python equivalent
exists (i.e. all builtin integer and floating point types, as well as
bool), then these will map onto those Python conversions.
Note that char* is mapped onto __str__.
Example:

>>> from cppyy.gbl import Concrete
>>> print(Concrete())
Hello operator const char*!
>>>

C++ code can overload conversion operators by providing methods in a class or
global functions.
Special care needs to be taken for the latter: first, make sure that they are
actually available in some header file.
Second, make sure that headers are loaded in the desired order.
I.e. that these global overloads are available before use.

 STL

STL

Parts of the Standard Template Library (STL), in particular its container
types, are the de facto equivalent of Python’s builtin types.
STL is written in C++ and Python bindings of it are fully functional as-is,
but are much more useful when pluggable into idiomatic expressions where
Python builtin containers are expected (e.g. in list contractions).

There are two extremes to achieve such drop-in behavior: copy into Python
builtins, so that the Python-side always deals with true Python objects; or
adjust the C++ interfaces to be the same as their Python equivalents.
Neither is very satisfactory: the former is not because of the existence of
global/static variables and return-by-reference.
If only a copy is available, then expected modifications do not propagate.
Copying is also either slow (when copying every time) or memory intensive (if
the results are cached).
Filling out the interfaces may look more appealing, but all operations then
involve C++ function calls, which can be slower than the Python equivalents,
and C++-style error handling.

Given that neither choice will satisfy all cases, cppyy aims to maximize
functionality and minimum surprises based on common use.
Thus, for example, std::vector grows a pythonistic __len__ method,
but does not lose its C++ size method.
Passing a Python container through a const reference to a std::vector
will trigger automatic conversion, but such an attempt through a non-const
reference will fail since a non-temporary C++ object is required [1] to
return any updates/changes.

std::string is almost always converted to Python’s str on function
returns (the exception is return-by-reference when assigning), but not when
its direct use is more likely such as in the case of (global) variables or
when iterating over a std::vector<std::string>.

The rest of this section shows examples of how STL containers can be used in
a natural, pythonistic, way.

vector

A std::vector is the most commonly used C++ container type because it is
more efficient and performant than specialized types such as list and
map, unless the number of elements gets very large.
Python has several similar types, from the builtin tuple and list,
the array from builtin module array, to “as-good-as-builtin”
numpy.ndarray.
A vector is more like the latter two in that it can contain only one type,
but more like the former two in that it can contain objects.
In practice, it can interplay well with all these containers, but e.g.
efficiency and performance can differ significantly.

A vector can be instantiated from any sequence, including generators, and
vectors of objects can be recursively constructed:

>>> from cppyy.gbl.std import vector, pair
>>> v = vector[int](range(10))
>>> len(v)
10
>>> vp = vector[pair[int, int]](((1, 2), (3, 4)))
>>> len(vp)
2
>>> vp[1][0]
3
>>>

To extend a vector in-place with another sequence object, use +=, just as
would work for Python’s list:

>>> v += range(10, 20)
>>> len(v)
20
>>>

The easiest way to print the full contents of a vector, is by using a list
and printing that instead.
Indexing and slicing of a vector follows the normal Python slicing rules:

>>> v[1]
1
>>> v[-1]
19
>>> v[-4:]
<cppyy.gbl.std.vector<int> object at 0x7f9051057650>
>>> list(v[-4:])
[16, 17, 18, 19]
>>>

The usual iteration operations work on vector, but the C++ rules still apply,
so a vector that is being iterated over can not be modified in the loop
body.
(On the plus side, this makes it much faster to iterate over a vector than,
say, a numpy ndarray.)

>>> for i in v[2:5]:
... print(i)
...
2
3
4
>>> 2 in v
True
>>> sum(v)
190
>>>

When a function takes a non-l-value (const-ref, move, or by-value) vector as
a parameter, another sequence can be used and cppyy will automatically
generate a temporary.
Typically, this will be faster than coding up such a temporary on the Python
side, but if the same sequence is used multiple times, creating a temporary
once and re-using it will be the most efficient approach.o

>>> cppyy.cppdef("""
... int sumit1(const std::vector<int>& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }
... int sumit2(std::vector<int> data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }
... int sumit3(const std::vector<int>&& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }""")
...
True
>>> cppyy.gbl.sumit1(range(5))
10
>>> cppyy.gbl.sumit2(range(6))
16
>>> cppyy.gbl.sumit3(range(7))
21
>>>

The temporary vector is created using the vector constructor taking an
std::initializer_list, which is more flexible than constructing a
temporary vector and filling it: it allows the data in the container to be
implicitly converted (e.g. from int to double type, or from
pointer to derived to pointer to base class).
As a consequence, however, with STL containers being allowed where Python
containers are, this in turn means that you can pass e.g. an
std::vector<int> (or std::list<int>) where a std::vector<double>
is expected and a temporary is allowed:

>>> cppyy.cppdef("""
... double sumit4(const std::vector<double>& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }""")
...
True
>>> cppyy.gbl.sumit4(vector[int](range(7)))
21.0
>>>

Normal overload resolution rules continue to apply, however, thus if an
overload were available that takes an const std::vector<int>&, it would
be preferred.

When templates are involved, overload resolution is stricter, to ensure that
a better matching instantiation is preferred over an implicit conversion.
However, that does mean that as-is, C++ is actually more flexible: it has the
curly braces initializer syntax to explicitly infer an
std::initializer_list, with no such equivalent in Python.

Although in general this approach guarantees the intended result, it does put
some strictures on the Python side, requiring careful use of types.
However, an easily fixable error is preferable over an implicitly wrong
result.
Note the type of the init argument in the call resulting in an (attempted)
implicit instantiation in the following example:

>>> cppyy.cppdef("""
... template<class T>
... T sumit_T(const std::vector<T>& data, T init) {
... return std::accumulate(data.begin(), data.end(), init);
... }""")
...
True
>>> cppyy.gbl.sumit_T(vector['double'](range(7)), 0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Template method resolution failed:
 Failed to instantiate "sumit_T(std::vector<double>&,int)"
 Failed to instantiate "sumit_T(std::vector<double>*,int)"
 Failed to instantiate "sumit_T(std::vector<double>,int)"
>>> cppyy.gbl.sumit_T(vector['double'](range(7)), 0.)
21.0
>>>

To be sure, the code is too strict in the simplistic example above, and
with a future version of Cling it should be possible to lift some of these
restrictions without causing incorrect results.

Footnotes

[1]
The meaning of “temporary” differs between Python and C++: in a statement such as func(std.vector[int]((1, 2, 3))), there is no temporary as far as Python is concerned, even as there clearly is in the case of a similar statement in C++. Thus that call will succeed even if func takes a non-const reference.

 Exceptions

Exceptions

All C++ exceptions are converted to Python exceptions and all Python
exceptions are converted to C++ exceptions, to allow exception propagation
through multiple levels of callbacks, while retaining the option to handle
the outstanding exception as needed in either language.
To preserve an exception across the language boundaries, it must derive from
std::exception.
If preserving the exception (or its type) is not possible, generic exceptions
are used to propagate the exception: Exception in Python or
CPyCppyy::PyException in C++.

In the most common case of an instance of a C++ exception class derived from
std::exception that is thrown from a compiled library and which is
copyable, the exception can be caught and handled like any other bound C++
object (or with Exception on the Python and std::exception on the
C++ side).
If the exception is not copyable, but derived from std::exception, the
result of its what() reported with an instance of Python’s Exception.
In all other cases, including exceptions thrown from interpreted code (due to
limitations of the Clang JIT), the exception will turn into an instance of
Exception with a generic message.

The standard C++ exceptions are explicitly not mapped onto standard Python
exceptions, since other than a few simple cases, the mapping is too crude to
be useful as the typical usage in each standard library is too different.
Thus, for example, a thrown std::runtime_error instance will become a
cppyy.gbl.std.runtime_error instance on the Python side (with Python’s
Exception as its base class), not a RuntimeError instance.

The C++ code used for the examples below can be found
here, and it is assumed that that code is
loaded at the start of any session.
Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

In addition, the examples require the throw to be in compiled code.
Save the following and build it into a shared library libfeatures.so (or
libfeatures.dll on MS Windows):

#include "features.h"

void throw_an_error(int i) {
 if (i) throw SomeError{"this is an error"};
 throw SomeOtherError{"this is another error"};
}

And load the resulting library:

>>> cppyy.load_library('libfeatures')
>>>

Then try it out:

>>> cppyy.gbl.throw_an_error(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
cppyy.gbl.SomeError: void ::throw_an_error(int i) =>
 SomeError: this is an error
>>>

Note how the full type is preserved and how the result of what() is used
for printing the exception.
By preserving the full C++ type, it is possible to call any other member
functions the exception may provide beyond what or access any additional
data it carries.

To catch the exception, you can either use the full type, or any of its base
classes, including Exception and cppyy.gbl.std.exception:

>>> try:
... cppyy.gbl.throw_an_error(0)
... except cppyy.gbl.SomeOtherError as e: # catch by exact type
... print("received:", e)
...
received: <cppyy.gbl.SomeOtherError object at 0x7f9e11d3db10>
>>> try:
... cppyy.gbl.throw_an_error(0)
... except Exception as e: # catch through base class
... print("received:", e)
...
received: <cppyy.gbl.SomeOtherError object at 0x7f9e11e00310>
>>>

 Python

Python

The C++ code used for the examples below can be found
here, and it is assumed that that code is
loaded at the start of any session.
Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

PyObject

Arguments and return types of PyObject* can be used, and passed on to
CPython API calls (or through cpyext in PyPy).

Doc strings

The documentation string of a method or function contains the C++
arguments and return types of all overloads of that name, as applicable.
Example:

>>> from cppyy.gbl import Concrete
>>> print Concrete.array_method.__doc__
void Concrete::array_method(int* ad, int size)
void Concrete::array_method(double* ad, int size)
>>>

Help

Bound C++ class is first-class Python and can thus be inspected like any
Python objects can.
For example, we can ask for help():

>>> help(Concrete)
Help on class Concrete in module gbl:

class Concrete(Abstract)
 | Method resolution order:
 | Concrete
 | Abstract
 | CPPInstance
 | __builtin__.object
 |
 | Methods defined here:
 |
 | __assign__(self, const Concrete&)
 | Concrete& Concrete::operator=(const Concrete&)
 |
 | __init__(self, *args)
 | Concrete::Concrete(int n = 42)
 | Concrete::Concrete(const Concrete&)
 |
 etc.

 Low-level code

Low-level code

C code and older C++ code sometimes makes use of low-level features such as
pointers to builtin types, some of which do not have any Python equivalent
(e.g. unsigned short*).
Furthermore, such codes tend to be ambiguous: the information from header
file is not sufficient to determine the full purpose.
For example, an int* type may refer to the address of a single int
(an out-parameter, say) or it may refer to an array of int, the ownership
of which is not clear either.
cppyy provides a few low-level helpers and integration with the Python
ctypes module [https://docs.python.org/3/library/ctypes.html] to cover these cases.

Use of these low-level helpers will obviously lead to very “C-like” code and
it is recommended to pythonize the code, perhaps
using the Cling JIT and embedded C++.

Note: the low-level module is not loaded by default (since its use is, or
should be, uncommon).
It needs to be imported explicitly:

>>> import cppyy.ll
>>>

C/C++ casts

C++ instances are auto-casted to the most derived available type, so do not
require explicit casts even when a function returns a pointer to a base
class or interface.
However, when given only a void* or intptr_t type on return, a cast
is required to turn it into something usable.

	bind_object: This is the preferred method to proxy a C++ address,
and lives in cppyy, not cppyy.ll, as it is not a low-level C++
cast, but a cppyy API that is also used internally.
It thus plays well with object identity, references, etc.
Example:

>>> cppyy.cppdef("""
... struct MyStruct { int fInt; };
... void* create_mystruct() { return new MyStruct{42}; }
... """)
...
>>> s = cppyy.gbl.create_mystruct()
>>> print(s)
<cppyy.LowLevelView object at 0x10559d430>
>>> sobj = cppyy.bind_object(s, 'MyStruct')
>>> print(sobj)
<cppyy.gbl.MyStruct object at 0x7ff25e28eb20>
>>> print(sobj.fInt)
42
>>>

Instead of the type name as a string, bind_object can also take the
actual class (here: cppyy.gbl.MyStruct).

	Typed nullptr: A Python side proxy can pass through a pointer to
pointer function argument, but if the C++ side allocates memory and
stores it in the pointer, the result is a memory leak.
In that case, use bind_object to bind cppyy.nullptr instead, to
get a typed nullptr to pass to the function.
Example (continuing from the example above):

>>> cppyy.cppdef("""
... void create_mystruct(MyStruct** ptr) { *ptr = new MyStruct{42}; }
... """)
...
>>> s = cppyy.bind_object(cppyy.nullptr, 'MyStruct')
>>> print(s)
<cppyy.gbl.MyStruct object at 0x0>
>>> cppyy.gbl.create_mystruct(s)
>>> print(s)
<cppyy.gbl.MyStruct object at 0x7fc7d85b91c0>
>>> print(s.fInt)
42
>>>

	C-style cast: This is the simplest option for builtin types.
The syntax is “template-style”, example:

>>> cppyy.cppdef("""
... void* get_data(int sz) {
... int* iptr = (int*)malloc(sizeof(int)*sz);
... for (int i=0; i<sz; ++i) iptr[i] = i;
... return iptr;
... }""")
...
>>> NDATA = 4
>>> d = cppyy.gbl.get_data(NDATA)
>>> print(d)
<cppyy.LowLevelView object at 0x1068cba30>
>>> d = cppyy.ll.cast['int*'](d)
>>> d.reshape((NDATA,))
>>> print(list(d))
[0, 1, 2, 3]
>>>

	C++-style casts: Similar to the C-style cast, there are
ll.static_cast and ll.reinterpret_cast.
There should never be a reason for a dynamic_cast, since that only
applies to objects, for which auto-casting will work.
The syntax is “template-style”, just like for the C-style cast above.

NumPy casts

The cppyy.LowLevelView type returned for pointers to basic types,
including for void*, is a simple and light-weight view on memory, given a
pointer, type, and number of elements (or unchecked, if unknown).
It only supports basic operations such as indexing and iterations, but also
the buffer protocol for integration with full-fledged functional arrays such
as NumPy`s ndarray.

In addition, specifically when dealing with void* returns, you can use
NumPy’s low-level frombuffer interface to perform the cast.
Example:

>>> cppyy.cppdef("""
... void* create_float_array(int sz) {
... float* pf = (float*)malloc(sizeof(float)*sz);
... for (int i = 0; i < sz; ++i) pf[i] = 2*i;
... return pf;
... }""")
...
>>> import numpy as np
>>> NDATA = 8
>>> arr = cppyy.gbl.create_float_array(NDATA)
>>> print(arr)
<cppyy.LowLevelView object at 0x109f15230>
>>> arr.reshape((NDATA,)) # adjust the llv's size
>>> v = np.frombuffer(arr, dtype=np.float32, count=NDATA) # cast to float
>>> print(len(v))
8
>>> print(v)
array([0., 2., 4., 6., 8., 10., 12., 14.], dtype=float32)
>>>

Note that NumPy will internally check the total buffer size, so if the size
you are casting to is larger than the size you are casting from, then
the number of elements set in the reshape call needs to be adjusted
accordingly.

Capsules

It is not possible to pass proxies from cppyy through function arguments of
another binder (and vice versa, with the exception of ctypes, see below),
because each will use a different internal representation, including for type
checking and extracting the C++ object address.
However, all Python binders are able to rebind (just like bind_object
above for cppyy) the result of at least one of the following:

	ll.addressof: Takes a cppyy bound C++ object and returns its address as
an integer value.
Takes an optional byref parameter and if set to true, returns a pointer
to the address instead.

	ll.as_capsule: Takes a cppyy bound C++ object and returns its address as
a PyCapsule object.
Takes an optional byref parameter and if set to true, returns a pointer
to the address instead.

	ll.as_cobject: Takes a cppyy bound C++ object and returns its address as
a PyCObject object for Python2 and a PyCapsule object for Python3.
Takes an optional byref parameter and if set to true, returns a pointer
to the address instead.

	ll.as_ctypes: Takes a cppyy bound C++ object and returns its address as
a ctypes.c_void_p object.
Takes an optional byref parameter and if set to true, returns a pointer
to the address instead.

ctypes

The ctypes module [https://docs.python.org/3/library/ctypes.html] has been part of Python since version 2.5 and provides a
Python-side foreign function interface.
It is clunky to use and has very bad performance, but it is guaranteed to be
available.
It does not have a public C interface, only the Python one, but its internals
have been stable since its introduction, making it safe to use for tight and
efficient integration at the C level (with a few Python helpers to assure
lazy lookup).

Objects from ctypes can be passed through arguments of functions that
take a pointer to a single C++ builtin, and ctypes pointers can be passed
when a pointer-to-pointer is expected, e.g. for array out-parameters.
This leads to the following set of possible mappings:

	C++

	ctypes

	by value (ex.: int)

	.value (ex.: c_int(0).value)

	by const reference (ex.: const int&)

	.value (ex.: c_int(0).value)

	by reference (ex.: int&)

	direct (ex.: c_int(0))

	by pointer (ex.: int*)

	direct (ex.: c_int(0))

	by ptr-ref (ex.: int*&)

	pointer (ex.: pointer(c_int(0)))

	by ptr-ptr in (ex.: int**)

	pointer (ex.: pointer(c_int(0)))

	by ptr-ptr out (ex.: int**)

	POINTER (ex.: POINTER(c_int)())

The ctypes pointer objects (from POINTER, pointer, or byref)
can also be used for pass by reference or pointer, instead of the direct
object, and ctypes.c_void_p can pass through all pointer types.
The addresses will be adjusted internally by cppyy.

Note that ctypes.c_char_p is expected to be a NULL-terminated C string,
not a character array (see the ctypes module [https://docs.python.org/3/library/ctypes.html] documentation), and that
ctypes.c_bool is a C _Bool type, not C++ bool.

Memory

C++ has three ways of allocating heap memory (malloc, new, and
new[]) and three corresponding ways of deallocation (free,
delete, and delete[]).
Direct use of malloc and new should be avoided for C++ classes, as
these may override operator new to control their allocation own.
However these low-level allocators can be necessary for builtin types on
occassion if the C++ side takes ownership (otherwise, prefer either
array from the builtin module array or ndarray from Numpy).

The low-level module adds the following functions:

	ll.malloc: an interface on top of C’s malloc.
Use it as a template with the number of elements (not the number types) to
be allocated.
The result is a cppyy.LowLevelView with the proper type and size:

>>> arr = cppyy.ll.malloc[int](4) # allocates memory for 4 C ints
>>> print(len(arr))
4
>>> print(type(arr[0]))
<type 'int'>
>>>

The actual C malloc can also be used directly, through cppyy.gbl.malloc,
taking the number of bytes to be allocated and returning a void*.

	ll.free: an interface to C’s free, to deallocate memory allocated by
C’s malloc.
To continue to example above:

>>> cppyy.ll.free(arr)
>>>

The actual C free can also be used directly, through cppyy.gbl.free.

	ll.array_new: an interface on top of C++’s new[].
Use it as a template; the result is a cppyy.LowLevelView with the
proper type and size:

>>> arr = cppyy.ll.array_new[int](4) # allocates memory for 4 C ints
>>> print(len(arr))
4
>>> print(type(arr[0]))
<type 'int'>
>>>

	ll.array_delete: an interface on top of C++’s delete[].
To continue to example above:

>>> cppyy.ll.array_delete(arr)
>>>

 Miscellaneous

Miscellaneous

This is a collection of a few more features listed that do not have a proper
place yet in the rest of the documentation.

The C++ code used for the examples below can be found
here, and it is assumed that that code is
loaded at the start of any session.
Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

Special variables

There are several conventional “special variables” that control behavior of
functions or provide (internal) information.
Often, these can be set/used in pythonizations to handle memory management or
Global Interpreter Lock (GIL) release.

	__python_owns__: a flag that every bound instance carries and determines
whether Python or C++ owns the C++ instance (and associated memory).
If Python owns the instance, it will be destructed when the last Python
reference to the proxy disappears.
You can check/change the ownership with the __python_owns__ flag that every
bound instance carries.
Example:

>>> from cppyy.gbl import Concrete
>>> c = Concrete()
>>> c.__python_owns__ # True: object created in Python
True
>>>

	__creates__: a flag that every C++ overload carries and determines
whether the return value is owned by C++ or Python: if True, Python owns
the return value, otherwise C++.

	__set_lifeline__: a flag that every C++ overload carries and determines
whether the return value should place a back-reference on self, to
prevent the latter from going out of scope before the return value does.
The default is False, but will be automatically set at run-time if a
return value’s address is a C++ object pointing into the memory of this,
or if self is a by-value return.

	__release_gil__: a flag that every C++ overload carries and determines
whether the Global Interpreter Lock (GIL) should be released during the C++
call to allow multi-threading.
The default is False.

	__useffi__: a flag that every C++ overload carries and determines
whether generated wrappers or direct foreign functions should be used.
This is for PyPy only; the flag has no effect on CPython.

	__sig2exc__: a flag that every C++ overload carries and determines
whether C++ signals (such as SIGABRT) should be converted into Python
exceptions.

	__cppname__: a string that every C++ bound class carries and contains
the actual C++ name (as opposed to __name__ which has the Python name).
This can be useful for template instantiations, documentation, etc.

STL algorithms

It is usually easier to use a Python equivalent or code up the effect of an
STL algorithm directly, but when operating on a large container, calling an
STL algorithm may offer better performance.
It is important to note that all STL algorithms are templates and need the
correct types to be properly instantiated.
STL containers offer typedefs to obtain those exact types and these should
be used rather than relying on the usual implicit conversions of Python types
to C++ ones.
For example, as there is no char type in Python, the std::remove call
below can not be instantiated using a Python string, but the
std::string::value_type must be used instead:

>>> cppstr = cppyy.gbl.std.string
>>> n = cppstr('this is a C++ string')
>>> print(n)
this is a C++ string
>>> n.erase(cppyy.gbl.std.remove(n.begin(), n.end(), cppstr.value_type(' ')))
<cppyy.gbl.__wrap_iter<char*> object at 0x7fba35d1af50>
>>> print(n)
thisisaC++stringing
>>>

Reduced typing

Typing cppyy.gbl all the time gets old rather quickly, but the dynamic
nature of cppyy makes something like from cppyy.gbl import *
impossible.
For example, classes can be defined dynamically after that statement and then
they would be missed by the import.
In scripts, it is easy enough to rebind names to achieve a good amount of
reduction in typing (and a modest performance improvement to boot, because of
fewer dictionary lookups), e.g.:

import cppyy
std = cppyy.gbl.std
v = std.vector[int](range(10))

But even such rebinding becomes annoying for (brief) interactive sessions.

For CPython only (and not with tools such as IPython or in IDEs that replace
the interactive prompt), there is a fix, using
from cppyy.interactive import *.
This makes lookups in the global dictionary of the current frame also
consider everything under cppyy.gbl.
This feature comes with a performance penalty and is not meant for
production code.
Example usage:

>>> from cppyy.interactive import *
>>> v = std.vector[int](range(10))
>>> print(list(v))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>
>>> cppdef("struct SomeStruct {};")
True
>>> s = SomeStruct() # <- dynamically made available
>>> s
<cppyy.gbl.SomeStruct object at 0x7fa9b8624320>
>>>

For PyPy, IPython, etc. cppyy.gbl is simply rebound as g and
cppyy.gbl.std is made available as std.
Not as convenient as full lookup, and missing any other namespaces that may be
available, but still saves some typing in may cases.

Odds and ends

	namespaces: Are represented as python classes.
Namespaces are more open-ended than classes, so sometimes initial access may
result in updates as data and functions are looked up and constructed
lazily.
Thus the result of dir() on a namespace shows the classes and functions
available for binding, even if these may not have been created yet.
Once created, namespaces are registered as modules, to allow importing from
them.
The global namespace is cppyy.gbl.

	NULL: Is represented as cppyy.nullptr.
Starting C++11, the keyword nullptr is used to represent NULL.
For clarity of intent, it is recommended to use this instead of None
(or the integer 0, which can serve in some cases), as None is better
understood as void in C++.

 File features.h

File features.h

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

	#include <cmath>
#include <iostream>
#include <vector>

//-----
unsigned int gUint = 0;

//-----
class Abstract {
public:
 virtual ~Abstract() {}
 virtual void abstract_method() = 0;
 virtual void concrete_method() = 0;
};

void Abstract::concrete_method() {
 std::cout << "called Abstract::concrete_method" << std::endl;
}

//-----
class Concrete : Abstract {
public:
 Concrete(int n=42) : m_int(n), m_const_int(17) {}
 ~Concrete() {}

 virtual void abstract_method() {
 std::cout << "called Concrete::abstract_method" << std::endl;
 }

 virtual void concrete_method() {
 std::cout << "called Concrete::concrete_method" << std::endl;
 }

 void array_method(int* ad, int size) {
 for (int i=0; i < size; ++i)
 std::cout << ad[i] << ' ';
 std::cout << '\n';
 }

 void array_method(double* ad, int size) {
 for (int i=0; i < size; ++i)
 std::cout << ad[i] << ' ';
 std::cout << '\n';
 }

 void uint_ref_assign(unsigned int& target, unsigned int value) {
 target = value;
 }

 Abstract* show_autocast() {
 return this;
 }

 operator const char*() {
 return "Hello operator const char*!";
 }

public:
 double m_data[4];
 int m_int;
 const int m_const_int;

 static int s_int;
};

typedef Concrete Concrete_t;

int Concrete::s_int = 321;

void call_abstract_method(Abstract* a) {
 a->abstract_method();
}

//-----
class Abstract1 {
public:
 virtual ~Abstract1() {}
 virtual std::string abstract_method1() = 0;
};

class Abstract2 {
public:
 virtual ~Abstract2() {}
 virtual std::string abstract_method2() = 0;
};

std::string call_abstract_method1(Abstract1* a) {
 return a->abstract_method1();
}

std::string call_abstract_method2(Abstract2* a) {
 return a->abstract_method2();
}

//-----
int global_function(int) {
 return 42;
}

double global_function(double) {
 return std::exp(1);
}

int call_int_int(int (*f)(int, int), int i1, int i2) {
 return f(i1, i2);
}

template<class A, class B, class C = A>
C multiply(A a, B b) {
 return C{a*b};
}

//-----
namespace Namespace {

 class Concrete {
 public:
 class NestedClass {
 public:
 std::vector<int> m_v;
 };

 };

 int global_function(int i) {
 return 2*::global_function(i);
 }

 double global_function(double d) {
 return 2*::global_function(d);
 }

} // namespace Namespace

//-----
enum EFruit {kApple=78, kBanana=29, kCitrus=34};
enum class NamedClassEnum { E1 = 42 };

//-----
void throw_an_error(int i);

class SomeError : public std::exception {
public:
 explicit SomeError(const std::string& msg) : fMsg(msg) {}
 const char* what() const throw() override { return fMsg.c_str(); }

private:
 std::string fMsg;
};

class SomeOtherError : public SomeError {
public:
 explicit SomeOtherError(const std::string& msg) : SomeError(msg) {}
 SomeOtherError(const SomeOtherError& s) : SomeError(s) {}
};

 Debugging

Debugging

By default, the clang JIT as used by cppyy does not generate debugging
information.
This is first of all because it has proven to be not reliable in all cases,
but also because in a production setting this information, being internal to
the wrapper generation, goes unused.
However, that does mean that a debugger that starts from python will not be
able to step through JITed code into the C++ function that needs debugging,
even when such information is available for that C++ function.

To enable debugging information in JITed code, set the EXTRA_CLING_ARGS
envar to -g (and any further compiler options you need, e.g. add -O2
to debug optimized code).

On a crash in C++, the backend will attempt to provide a stack trace.
This works quite well on Linux (through gdb) and decently on MacOS
(through unwind), but is currently unreliable on MS Windows.
To prevent printing of this trace, which can be slow to produce, set the
envar CPPYY_CRASH_QUIET to ‘1’.

It is even more useful to obtain a traceback through the Python code that led
up to the problem in C++.
Many modern debuggers allow mixed-mode C++/Python debugging (for example
gdb [https://wiki.python.org/moin/DebuggingWithGdb] and MSVC [https://docs.microsoft.com/en-us/visualstudio/python/debugging-mixed-mode-c-cpp-python-in-visual-studio]), but cppyy can also turn abortive C++ signals (such as a
segmentation violation) into Python exceptions, yielding a normal traceback.
This is particularly useful when working with cross-inheritance and other
cross-language callbacks.

To enable the signals to exceptions conversion, import the lowlevel module
cppyy.ll and use:

import cppyy.ll
cppyy.ll.set_signals_as_exception(True)

Call set_signals_as_exception(False) to disable the conversion again.
It is recommended to only have the conversion enabled around the problematic
code, as it comes with a performance penalty.
If the problem can be localized to a specific function, you can use its
__sig2exc__ flag to only have the conversion active in that function.
Finally, for convenient scoping, you can also use:

with cppyy.ll.signals_as_exception():
 # crashing code goes here

The translation of signals to exceptions is as follows (all of the exceptions
are subclasses of cppyy.ll.FatalError):

	C++ signal

	Python exception

	SIGSEGV

	cppyy.ll.SegmentationViolation

	SIGBUS

	cppyy.ll.BusError

	SIGABRT

	cppyy.ll.AbortSignal

	SIGILL

	cppyy.ll.IllegalInstruction

As an example, consider the following cross-inheritance code that crashes
with a segmentation violation in C++, because a nullptr is dereferenced:

import cppyy
import cppyy.ll

cppyy.cppdef("""
 class Base {
 public:
 virtual ~Base() {}
 virtual int runit() = 0;
 };

 int callback(Base* b) {
 return b->runit();
 }

 void segfault(int* i) { *i = 42; }
""")

class Derived(cppyy.gbl.Base):
 def runit(self):
 print("Hi, from Python!")
 cppyy.gbl.segfault(cppyy.nullptr)

If now used with signals_as_exception, e.g. like so:

d = Derived()
with cppyy.ll.signals_as_exception():
 cppyy.gbl.callback(d)

it produces the following, very informative, Python-side trace:

Traceback (most recent call last):
 File "crashit.py", line 25, in <module>
 cppyy.gbl.callback(d)
cppyy.ll.SegmentationViolation: int ::callback(Base* b) =>
 SegmentationViolation: void ::segfault(int* i) =>
 SegmentationViolation: segfault in C++; program state was reset

whereas without, there would be no Python-side information at all.

 Pythonizations

Pythonizations

Automatic bindings generation mostly gets the job done, but unless a C++
library was designed with expressiveness and interactivity in mind, using it
will feel stilted.
Thus, if you are not the end-user of a set of bindings, it is beneficial to
implement pythonizations.
Some of these are already provided by default, e.g. for STL containers.
Consider the following code, iterating over an STL map, using naked bindings
(i.e. “the C++ way”):

>>> from cppyy.gbl import std
>>> m = std.map[int, int]()
>>> for i in range(10):
... m[i] = i*2
...
>>> b = m.begin()
>>> while b != m.end():
... print(b.__deref__().second, end=' ')
... b.__preinc__()
...
0 2 4 6 8 10 12 14 16 18
>>>

Yes, that is perfectly functional, but it is also very clunky.
Contrast this to the (automatic) pythonization:

>>> for key, value in m:
... print(value, end=' ')
...
0 2 4 6 8 10 12 14 16 18
>>>

Such a pythonization can be written completely in Python using the bound C++
methods, with no intermediate language necessary.
Since it is written on abstract features, there is also only one such
pythonization that works for all STL map instantiations.

Python callbacks

Since bound C++ entities are fully functional Python ones, pythonization can
be done explicitly in an end-user facing Python module.
However, that would prevent lazy installation of pythonizations, so instead a
callback mechanism is provided.

A callback is a function or callable object taking two arguments: the Python
proxy class to be pythonized and its C++ name.
The latter is provided to allow easy filtering.
This callback is then installed through cppyy.py.add_pythonization and
ideally only for the relevant namespace (installing callbacks for classes in
the global namespace is supported, but beware of name clashes).

Pythonization is most effective of well-structured C++ libraries that have
idiomatic behaviors.
It is then straightforward to use Python reflection to write rules.
For example, consider this callback that looks for the conventional C++
function GetLength and replaces it with Python’s __len__:

import cppyy

def replace_getlength(klass, name):
 try:
 klass.__len__ = klass.__dict__['GetLength']
 except KeyError:
 pass

cppyy.py.add_pythonization(replace_getlength, 'MyNamespace')

cppyy.cppdef("""
namespace MyNamespace {
class MyClass {
public:
 MyClass(int i) : fInt(i) {}
 int GetLength() { return fInt; }

private:
 int fInt;
};
}""")

m = cppyy.gbl.MyNamespace.MyClass(42)
assert len(m) == 42

C++ callbacks

If you are familiar with the Python C-API, it may sometimes be beneficial to
add unique optimizations to your C++ classes to be picked up by the
pythonization layer.
There are two conventional function that cppyy will look for (no registration
of callbacks needed):

static void __cppyy_explicit_pythonize__(PyObject* klass, const std::string&);

which is called only for the class that declares it.
And:

static void __cppyy_pythonize__(PyObject* klass, const std::string&);

which is also called for all derived classes.

Just as with the Python callbacks, the first argument will be the Python
class proxy, the second the C++ name, for easy filtering.
When called, cppyy will be completely finished with the class proxy, so any
and all changes, including such low-level ones such as the replacement of
iteration or buffer protocols, are fair game.

 Utilities

Utilities

The cppyy-backend package brings in the following utilities to help
with repackaging and redistribution:

	cling-config: for compile time flags

	rootcling and genreflex: for dictionary generation

	cppyy-generator: part of the CMake interface

Compiler/linker flags

cling-config is a small utility to provide access to the as-installed
configuration, such as compiler/linker flags and installation directories, of
other components.
Usage examples:

$ cling-config --help
Usage: cling-config [--cflags] [--cppflags] [--cmake]
$ cling-config --cmake
/usr/local/lib/python2.7/dist-packages/cppyy_backend/cmake

Dictionaries

Loading header files or code directly into cling is fine for interactive
work and smaller packages, but large scale applications benefit from
pre-compiling code, using the automatic class loader, and packaging
dependencies in so-called “dictionaries.”

A dictionary is a generated C++ source file containing references to the
header locations used when building (and any additional locations provided),
a set of forward declarations to reduce the need of loading header files, and
a few I/O helper functions.
The name “dictionary” is historic: before cling was used, it contained
the complete generated C++ reflection information, whereas now that is
derived at run-time from the header files.
It is still possible to fully embed header files rather than only storing
their names and search locations, to make the dictionary more self-contained.

After generating the dictionary, it should be compiled into a shared library.
This provides additional dependency control: by linking it directly with any
further libraries needed, you can use standard mechanisms such as rpath
to locate those library dependencies.
Alternatively, you can add the additional libraries to load to the mapping
files of the class loader (see below).

Note

The JIT needs to resolve linker symbols in order to call them through
generated wrappers.
Thus, any classes, functions, and data that will be used in Python need
to be exported.
This is the default behavior on Mac and Linux, but not on Windows.
On that platform, use __declspec(dllexport) to explicitly export the
classes and function you expect to call.
CMake has simple support for exporting all [https://cmake.org/cmake/help/latest/prop_tgt/WINDOWS_EXPORT_ALL_SYMBOLS.html] C++ symbols.

 CMake interface

CMake interface

CMake fragments are provided for an Automated generation of an end-user
bindings package from a CMake-based project build.
The bindings generated by rootcling, are ‘raw’ in the sense that:

	The .cpp file be compiled. The required compilation steps are
platform-dependent.

	The bindings are not packaged for distribution. Typically, users expect
to have a pip-compatible package.

	The binding are in the ‘cppyy.gbl’ namespace. This is an inconvenience at
best for users who might expect C++ code from KF5::Config to appear in
Python via “import KF5.Config”.

	The bindings are loaded lazily, which limits the discoverability of the
content of the bindings.

	cppyy supports customization of the bindings via ‘Pythonization’ but
there is no automated way to load them.

These issues are addressed by the CMake support. This is a blend of Python
packaging and CMake where CMake provides:

	Platform-independent scripting of the creation of a Python ‘wheel’ package
for the bindings.

	An facility for CMake-based projects to automate the entire bindings
generation process, including basic automated tests.

Note

The JIT needs to resolve linker symbols in order to call them through
generated wrappers.
Thus, any classes, functions, and data that will be used in Python need
to be exported.
This is the default behavior on Mac and Linux, but not on Windows.
On that platform, use __declspec(dllexport) to explicitly export the
classes and function you expect to call.
CMake has simple support for exporting all [https://cmake.org/cmake/help/latest/prop_tgt/WINDOWS_EXPORT_ALL_SYMBOLS.html] C++ symbols.

 PyPI Packages

PyPI Packages

Cppyy

The cppyy module is a frontend (see Package Structure), and most of the code is elsewhere. However, it does
contain the docs for all of the modules, which are built using
Sphinx: http://www.sphinx-doc.org/en/stable/ and published to
http://cppyy.readthedocs.io/en/latest/index.html using a webhook. To create
the docs:

$ pip install sphinx_rtd_theme
Collecting sphinx_rtd_theme
...
Successfully installed sphinx-rtd-theme-0.2.4
$ cd docs
$ make html

The Python code in this module supports:

	Interfacing to the correct backend for CPython or PyPy.

	Pythonizations (TBD)

Cppyy-backend

The cppyy-backend module contains two areas:

	A patched copy of cling

	Wrapper code

Package structure

There are four PyPA packages involved in a full installation, with the
following structure:

 (A) _cppyy (PyPy)
 / \
(1) cppyy (3) cling-backend -- (4) cppyy-cling
 \ /
 (2) CPyCppyy (CPython)

The user-facing package is always cppyy (1).
It is used to select the other (versioned) required packages, based on the
python interpreter for which it is being installed.

Below (1) follows a bifurcation based on interpreter.
This is needed for functionality and performance: for CPython, there is the
CPyCppyy package (2).
It is written in C++, makes use of the Python C-API, and installs as a Python
extension module.
For PyPy, there is the builtin module _cppyy (A).
This is not a PyPA package.
It is written in RPython as it needs access to low-level pointers, JIT hints,
and the _cffi_backend backend module (itself builtin).

Shared again across interpreters is the backend, which is split in a small
wrapper (3) and a large package that contains Cling/LLVM (4).
The former is still under development and expected to be updated frequently.
It is small enough to download and build very quickly.
The latter, however, takes a long time to build, but since it is very stable,
splitting it off allows the creation of binary wheels that need updating
only infrequently (expected about twice a year).

All code is publicly available; see the
section on repositories.

 Repositories

Repositories

The cppyy module is a frontend that requires an intermediate (Python
interpreter dependent) layer, and a backend (see
Package Structure).
Because of this layering and because it leverages several existing packages
through reuse, the relevant codes are contained across a number of
repositories.

	Frontend, cppyy: https://github.com/wlav/cppyy

	CPython (v2/v3) intermediate: https://github.com/wlav/CPyCppyy

	PyPy intermediate (module _cppyy): https://foss.heptapod.net/pypy

	Backend, cppyy: https://github.com/wlav/cppyy-backend

The backend repo contains both the cppyy-cling (under “cling”) and
cppyy-backend (under “clingwrapper”) packages.

Building from source

Except for cppyy-cling, the structure in the repositories follows a normal
PyPA package and they are thus ready to build with setuptools [https://setuptools.readthedocs.io/]: simply
clone the package and either run python setup.py, or use pip.

It is highly recommended to follow the dependency chain when manually
upgrading packages individually (i.e. cppyy-cling, cppyy-backend,
CPyCppyy if on CPython, and then finally cppyy), because upstream
packages expose headers that are used by the ones downstream.
Of course, if only building for a patch/point release, there is no need to
re-install the full chain (or follow the order).
Always run the local updates from the package directories (i.e. where the
setup.py file is located), as some tools rely on the package structure.

The STDCXX envar can be used to control the C++ standard version; use
MAKE to change the make command; and MAKE_NPROCS to control the
maximum number of parallel jobs.
Compilation of the backend, which contains a customized version of
Clang/LLVM, can take a long time, so by default the setup script will use all
cores (x2 if hyperthreading is enabled).

On MS Windows, some temporary path names may be too long, causing the build to
fail.
To resolve this issue, point the TMP and TEMP envars to an existing
directory with a short name before the build:
For example:

> set TMP=C:\TMP
> set TEMP=C:\TMP

Start with the cppyy-cling package (cppyy-backend repo, subdirectory
“cling”), which requires source to be pulled in from upstream, and thus takes
a few extra steps:

$ git clone https://github.com/wlav/cppyy-backend.git
$ cd cppyy-backend/cling
$ python setup.py egg_info
$ python create_src_directory.py
$ python -m pip install . --upgrade

The egg_info setup command is needed for create_src_directory.py to
find the right version.
That script in turn downloads the proper release from upstream [https://root.cern.ch/download/], trims and
patches it,
and installs the result in the “src” directory.
When done, the structure of cppyy-cling looks again like a PyPA package
and can be used/installed as expected, here using pip.

The cppyy-cling package, because it contains Cling/Clang/LLVM, is rather
large to build, so by default the setup script will use all cores (x2 if
hyperthreading is enabled).
You can change this behavior with the MAKE_NPROCS envar.
The wheel of cppyy-cling is reused by pip for all versions of CPython and
PyPy, thus the long compilation is needed only once for all different
versions of Python on the same machine.

Next up is cppyy-backend (cppyy-backend, subdirectory “clingwrapper”; omit
the first step if you already cloned the repo for cppyy-cling):

$ git clone https://github.com/wlav/cppyy-backend.git
$ cd cppyy-backend/clingwrapper
$ python -m pip install . --upgrade --no-use-pep517 --no-deps

Note the use of --no-use-pep517, which prevents pip from needlessly
going out to pypi.org and creating a local “clean” build environment from the
cached or remote wheels.
Instead, by skipping PEP 517, the local installation will be used.
This is imperative if there was a change in public headers or if the version
of cppyy-cling was locally updated and is thus not available on PyPI.

Upgrading CPyCppyy (if on CPython; it’s not needed for PyPy) and cppyy
is very similar:

$ git clone https://github.com/wlav/CPyCppyy.git
$ cd CPyCppyy
$ python -m pip install . --upgrade --no-use-pep517 --no-deps

Finally, the top-level package cppyy:

$ git clone https://github.com/wlav/cppyy.git
$ cd cppyy
$ python -m pip install . --upgrade --no-use-pep517 --no-deps

Please see the pip documentation [https://pip.pypa.io/] for more options, such as developer mode.

 Test suite

Test suite

The cppyy tests live in the top-level cppyy package, can be run for
both CPython and PyPy, and exercises the full setup, including the backend.
Most tests are standalone and can be run independently, with a few exceptions
in the template tests (see file test_templates.py).

To run the tests, first install cppyy by any usual means, then clone the
cppyy repo, and enter the test directory:

$ git clone https://github.com/wlav/cppyy.git
$ cd cppyy/test

Next, build the dictionaries, the manner of which depends on your platform.
On Linux or MacOS-X, run make:

$ make all

On Windows, run the dictionary building script:

$ python make_dict_win32.py all

Next, make sure you have pytest [https://docs.pytest.org/en/latest/] installed, for example with pip:

$ python -m pip install pytest

and finally run the tests:

$ python -m pytest -sv

On Linux and MacOS-X, all tests should succeed.
On MS Windows 32bit there are 4 failing tests, on 64bit there are 5 still
failing.

 History

History

What is now called cppyy started life as RootPython from CERN [https://cern.ch/], but
cppyy is not associated with CERN (it is still used there, however,
underpinning PyROOT [https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html#python-interface]).

Back in late 2002, Pere Mato of CERN, had the idea of using the CINT [https://en.wikipedia.org/wiki/CINT] C++
interpreter, which formed the interactive interface to ROOT [https://root.cern.ch], to call from
Python into C++: this became RootPython.
This binder interfaced with Python through boost.python [https://wiki.python.org/moin/boost.python/GettingStarted] (v1), transpiling
Python code into C++ and interpreting the result with CINT.
In early 2003, I ported this code to boost.python v2, then recently released.
In practice, however, re-interpreting the transpiled code was unusably slow,
thus I modified the code to make direct use of CINT’s internal reflection
system, gaining about 25x in performance.
I presented this work as PyROOT at the ROOT Users’ Workshop in early 2004,
and, after removing the boost.python dependency by using the C-API directly
(gaining another factor 7 in speedup!), it was included in ROOT.
PyROOT was presented at the SciPy’06 conference, but was otherwise not
advocated outside of High Energy Physics (HEP).

In 2010, the PyPy core developers and I held a sprint at CERN [https://morepypy.blogspot.com/2010/07/cern-sprint-report-wrapping-c-libraries.html] to use
Reflex, a standalone alternative to CINT’s reflection of C++, to add
automatic C++ bindings, PyROOT-style, to PyPy [https://www.pypy.org/].
This is where the name “cppyy” originated.
Coined by Carl Friedrich Bolz, if you want to understand the meaning, just
pronounce it slowly: cpp-y-y.

After the ROOT team replaced CINT with Cling [https://github.com/vgvassilev/cling], PyROOT soon followed.
As part of Google’s Summer of Code ‘16, Aditi Dutta moved PyPy/cppyy to Cling
as well, and packaged the code for use through PyPI [https://pypi.org/].
I continued this integration with the Python eco-system by forking PyROOT,
reducing its dependencies, and repackaging it as CPython/cppyy.
The combined result is the current cppyy project.
Mid 2018, version 1.0 was released.

 Philosophy

Philosophy

As a Python-C++ language binder, cppyy has several unique features: it fills
gaps and covers use cases not available through other binders.
This document explains some of the design choices made and the thinking
behind the implementations of those features.
It’s categorized as “philosophy” because a lot of it is open to
interpretation.
Its main purpose is simply to help you decide whether cppyy covers your use
cases and binding requirements, before committing any time to
trying it out.

Run-time v.s. compile-time

What performs better, run-time or compile-time?
The obvious answer is compile-time: see the performance differences between
C++ and Python, for example.
Obvious, but completely wrong, however.
In fact, when it comes to Python, it is even the wrong question.

Everything in Python is run-time: modules, classes, functions, etc. are all
run-time constructs.
A Python module that defines a class is a set of instructions to the Python
interpreter that lead to the construction of the desired class object.
A C/C++ extension module that defines a class does the same thing by calling
a succession of Python interpreter Application Programming Interfaces (APIs;
the exact same that Python uses itself internally).
If you use a compile-time binder such as SWIG [http://swig.org/] or pybind11 [https://pybind11.readthedocs.io/en/stable/] to bind a C++
class, then what gets compiled is the series of API calls necessary to
construct a Python-side equivalent at run-time (when the module gets
loaded), not the Python class object.
In short, whether a binding is created at “compile-time” or at run-time has
no measurable bearing on performance.

What does affect performance is the overhead to cross the language barrier.
This consists of unboxing Python objects to extract or convert the underlying
objects or data to something that matches what C++ expects; overload
resolution based on the unboxed arguments; offset calculations; and finally
the actual dispatch.
As a practical matter, overload resolution is the most costly part, followed
by the unboxing and conversion.
Best performance is achieved by specialization of the paths through the
run-time: recognize early the case at hand and select an optimized path.
For that reason, PyPy [https://www.pypy.org/] is so fast: JIT-ed traces operate on unboxed objects
and resolved overloads are baked into the trace, incurring no further cost.
Similarly, this is why pybind11 is so slow: its code generation is the C++
compiler’s template engine, so complex path selection and specialization is
very hard to do in a performance-portable way.

In cppyy, a great deal of attention has gone into built-in specialization
paths, which drives its performance.
For example, basic inheritance sequentially lines up classes, whereas
multiple (virtual) inheritance usually requires thunks.
Thus, when calling base class methods on a derived instance, the latter
requires offset calculations that depend on that instance, whereas the former
has fixed offsets fully determined by the class definitions themselves.
By labeling classes appropriately, single inheritance classes (by far the
most common case) do not incur the overhead in PyPy’s JIT-ed traces that is
otherwise unavoidable for multiple virtual inheritance.
As another example, consider that the C++ standard does not allow modifying
a std::vector while looping over it, whereas Python has no such
restriction, complicating loops.
Thus, cppyy has specialized std::vector iteration for both PyPy and
CPython, easily outperforming looping over an equivalent numpy array.

In CPython, the performance of non-overloaded function calls depends
greatly on the Python interpreter’s internal specializations; and Python3
has many specializations specific to basic extension modules (C function
pointer calls), gaining a performance boost of more than 30% over Python2.
Only since Python3.8 is there also better support for closure objects (vector
calls) as cppyy uses, to short-cut through the interpreter’s own overhead.

As a practical consideration, whether a binder performs well on code that you
care about, depends entirely on whether it has the relevant specializations
for your most performance-sensitive use cases.
The only way to know for sure is to write a test application and measure, but
a binder that provides more specializations, or makes it easy to add your
own, is more likely to deliver.

Manual v.s. automatic

Python is, today, one of the most popular programming languages and has a
rich and mature eco-system around it.
But when the project that became cppyy started in the field of High Energy
Physics (HEP), Python usage was non-existent there.
As a Python user to work in this predominantly C++ environment, you had to
bring your own bindings, thus automatic was the only way to go.
Binders such as SWIG, SIP (or even boost.python with Pyste) all had the fatal
assumption that you were providing Python bindings to your own C++ code,
and that you were thus able to modify those (many) areas of the C++ codes
that their parsers could not handle.
The CINT [https://en.wikipedia.org/wiki/CINT] interpreter was already well established in HEP, however, and
although it, too, had many limitations, C++ developers took care not to write
code that it could not parse.
In particular, since CINT drove automatic I/O, all data classes as needed for
analysis were parsable by CINT and consequently, by using CINT for the
bindings, at the very least one could run any analysis in Python.
This was key.

Besides not being able to parse some code (a problem that’s history for cppyy
since moving to Cling), all automatic parsers suffer from the problem that
the bindings produced have a strong “C++ look-and-feel” and that choices need
to be made in cases that can be bound in different, equally valid, ways.
As an example of the latter, consider the return of an std::vector:
should this be automatically converted to a Python list?
Doing so is more “pythonic”, but incurs a significant overhead, and no
automatic choice will satisfy all cases: user input is needed.

The typical way to solve these issues, is to provide an intermediate language
where corner cases can be brushed up, code can be made more Python friendly,
and design choices can be resolved.
Unfortunately, learning an intermediate language is quite an investment in
time and effort.
With cppyy, however, no such extra language is needed: using Cling, C++ code
can be embedded and JIT-ed for the same purpose.
In particular, cppyy can handle boxed Python objects and the full Python
C-API is available through Cling, allowing complete manual control where
necessary, and all within a single code base.
Similarly, a more pythonistic look-and-feel can be achieved in Python itself.
As a rule, Python is always the best place, far more so than any intermediate
language, to do Python-thingies.
Since all bound proxies are normal Python classes, functions, etc., Python’s
introspection (and regular expressions engine) can be used to provide rule
based improvements in a way similar to the use of directives in an
intermediate language.

On a practical note, it’s often said that an automatic binder can provide
bindings to 95% of your code out-of-the-box, with only the remaining part
needing manual intervention.
This is broadly true, but realize that that 5% contains the most difficult
cases and is where 20-30% of the effort would have gone in case the bindings
were done fully manually.
It is therefore important to consider what manual tools an automatic binder
offers and to make sure they fit your work style and needs, because you are
going to spend a significant amount of time with them.

LLVM dependency

cppyy depends on LLVM [https://llvm.org/], through Cling.
LLVM is properly internalized, so that it doesn’t conflict with other uses;
and in particular it is fine to mix Numba [http://numba.pydata.org/] and cppyy code.
It does mean a download cost of about 20MB for the binary wheel (exact size
differs per platform) on installation, and additional primarily initial
memory overheads at run-time.
Whether this is onerous depends strongly not only on the application, but
also on the rest of the software stack.

The initial cost of loading cppyy, and thus starting the Cling interpreter,
is about 45MB (platform dependent).
Initial uses of standard (e.g. STL) C++ results in deserialization of the
precompiled header at another eventual total cost of about 25MB (again,
platform dependent).
The actual bindings of course also carry overheads.
As a rule of thumb, you should budget for ~100MB all-in for the overhead
caused by the bindings.

Other binders do not have this initial memory overhead, but do of course
occur an overhead per module, class, function, etc.
At scale, however, cppyy has some advantages: all binding is lazy (including
the option of automatic loading), standard classes are never duplicated, and
there is no additional “per-module” overhead.
Thus, eventually (depending on the number of classes bound, across how many
modules, what use fraction, etc.), this initial cost is recouped when
compared to other binders.
As a rule of thumb, if about 10% of classes are used, it takes several
hundreds of bound classes before the cppyy-approach is beneficial.
In High Energy Physics, from which it originated, cppyy is regularly used in
software stacks of many thousands of classes, where this advantage is very
important.

Distributing headers

cppyy requires C/C++ headers to be available at run-time, which was never a
problem in the developer-centric world from which it originated: software
always had supported C++ APIs already, made available through header files,
and Python simply piggy-backed onto those.
JIT-ing code in those headers, which potentially picked up system headers
that were configured differently, was thus also never a problem.
Or rather, the same problem exists for C++, and configuration for C++ to
resolve potential issues translates transparently to Python.

There are only two alternatives: precompile headers into LLVM bitcode and
distribute those or provide a restricted set of headers.
Precompiled headers (and modules) were never designed to be portable and
relocatable, however, thus that may not be the panacea it seems.
A restricted set of headers is some work, but cppyy can operate on abstract
interface classes just fine (including Python-side cross-inheritance).

Large deployment

The single biggest headache in maintaining an installation of Python
extension modules is that Python patch releases can break them.
The two typical solutions are to either restrict the choice of Python
interpreter and version that are supported (common in HPC) or to provide
binaries (wheels) for a large range of different interpreters and versions
(as e.g. done for conda).

In the case of cppyy, only CPython/CPyCppyy and PyPy/_cppyy (an internal
module) depend on the Python interpreter (see:
Package Structure).
The user-facing cppyy module is pure Python and the backend (Cling) is
Python-independent.
Most importantly, since all bindings are generated at run-time, there are no
extension modules to regenerate and/or recompile.

Thus, the end-user only needs to rebuild/reinstall CPyCppyy for each relevant
version of Python (and nothing extra is needed for PyPy) to switch Python
versions and/or interpreter.
The rest of the software stack remains completely unchanged.
Only if Cling in cppyy’s backend is updated, which happens infrequently, and
non-standard precompiled headers or modules are used, do these need to be
rebuild in full.

 Index

Index

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 cppyy: Automatic Python-C++ bindings

 		
 Changelog

 		
 2022-04-03: 2.3.1

 		
 2022-03-08: 2.3.0

 		
 2021-11-14: 2.2.0

 		
 2021-07-17: 2.1.0

 		
 2021-05-14: 2.0.0

 		
 2021-04-28: 1.9.6

 		
 2021-03-22: 1.9.5

 		
 2021-03-17: 1.9.4

 		
 2021-02-15: 1.9.3

 		
 2021-01-05: 1.9.2

 		
 2020-11-23: 1.9.1

 		
 2020-11-22: 1.9.0

 		
 2020-11-06: 1.8.6

 		
 2020-10-31: 1.8.5

 		
 2020-10-10: 1.8.4

 		
 2020-09-21: 1.8.3

 		
 2020-09-08: 1.8.2

 		
 2020-09-01: 1.8.1

 		
 2020-07-12: 1.8.0

 		
 2020-06-06: 1.7.1

 		
 2020-04-27: 1.7.0

 		
 2020-03-15: 1.6.2

 		
 2020-01-04: 1.6.1

 		
 2019-12-23: 1.6.0

 		
 2019-11-07: 1.5.7

 		
 2019-11-03: 1.5.6

 		
 2019-10-16: 1.5.5

 		
 2019-09-25: 1.5.4

 		
 2019-09-15: 1.5.3

 		
 2019-09-06: 1.5.2

 		
 2019-08-26: 1.5.1

 		
 2019-08-18: 1.5.0

 		
 2019-07-01 : 1.4.12

 		
 2019-05-23 : 1.4.11

 		
 2019-05-13 : 1.4.10

 		
 2019-04-25 : 1.4.9

 		
 2019-04-22 : 1.4.8

 		
 2019-04-04 : 1.4.7

 		
 2019-04-02 : 1.4.6

 		
 2019-03-25 : 1.4.5

 		
 2019-03-20 : 1.4.4

 		
 2019-03-10 : 1.4.3

 		
 License and copyright

 		
 Additional copyright holders

 		
 External code

 		
 Installation

 		
 Wheels on PyPI

 		
 pip with conda

 		
 C++ standard with pip

 		
 Install from source

 		
 PyPy

 		
 Precompiled header

 		
 Trying it out

 		
 Example repos

 		
 Bugs and feedback

 		
 Basic types

 		
 Builtins

 		
 Arrays

 		
 Pointers

 		
 Enums

 		
 Strings/Unicode

 		
 std::string

 		
 std::wstring

 		
 const char*

 		
 char*

 		
 character types

 		
 Classes

 		
 Basics

 		
 Constructors

 		
 Destructors

 		
 Inheritance

 		
 Cross-inheritance

 		
 Multiple cross-inheritance

 		
 Methods

 		
 Data members

 		
 Operators

 		
 Templates

 		
 Typedefs

 		
 Functions

 		
 Free functions

 		
 Static methods

 		
 Methods

 		
 Operators

 		
 Templates

 		
 Overloading

 		
 Return values

 		
 *args and **kwds

 		
 Callbacks

 		
 Type conversions

 		
 Auto-casting

 		
 Operators

 		
 STL

 		
 vector

 		
 Exceptions

 		
 Python

 		
 PyObject

 		
 Doc strings

 		
 Help

 		
 Low-level code

 		
 C/C++ casts

 		
 NumPy casts

 		
 Capsules

 		
 ctypes

 		
 Memory

 		
 Miscellaneous

 		
 Special variables

 		
 STL algorithms

 		
 Reduced typing

 		
 Odds and ends

 		
 Debugging

 		
 Pythonizations

 		
 Python callbacks

 		
 C++ callbacks

 		
 Utilities

 		
 Compiler/linker flags

 		
 Dictionaries

 		
 Generation

 		
 Class loader

 		
 Bindings collection

 		
 CMake interface

 		
 Python packaging

 		
 CMake usage

 		
 cppyy_add_bindings

 		
 cppyy_find_pips

 		
 PyPI Packages

 		
 Cppyy

 		
 Cppyy-backend

 		
 Package structure

 		
 Repositories

 		
 Building from source

 		
 Test suite

 		
 History

 		
 Philosophy

 		
 Run-time v.s. compile-time

 		
 Manual v.s. automatic

 		
 LLVM dependency

 		
 Distributing headers

 		
 Large deployment
