cppyy is an automatic, run-time, Python-C++ bindings generator, for calling C++ from Python and Python from C++. Run-time generation enables detailed specialization for higher performance, lazy loading for reduced memory use in large scale projects, Python-side cross-inheritance and callbacks for working with C++ frameworks, run-time template instantiation, automatic object downcasting, exception mapping, and interactive exploration of C++ libraries. cppyy delivers this without any language extensions, intermediate languages, or the need for boiler-plate hand-written code. For design and performance, see this PyHPC’16 paper, albeit that the CPython/cppyy performance has been vastly improved since.

cppyy is based on Cling, the C++ interpreter, to match Python’s dynamism, interactivity, and run-time behavior. Consider this session, showing dynamic, interactive, mixing of C++ and Python features (there are more examples throughout the documentation and in the tutorial):

```python
>>> import cppyy
>>> cppyy.cppdef(""
... class MyClass {
... public:
... MyClass(int i) : m_data(i) {}
... virtual ~MyClass() {}
... virtual int add_int(int i) { return m_data + i; } 
... int m_data;
... });""
True
>>> from cppyy.gbl import MyClass
>>> m = MyClass(42)
>>> cppyy.cppdef(""
... void say_hello(MyClass* m) {
... std::cout << "Hello, the number is: " << m->m_data << std::endl;
... }"
"
True
>>> MyClass.say_hello = cppyy.gbl.say_hello
>>> m.say_hello()
Hello, the number is: 42
>>> m.m_data = 13
>>> m.say_hello()
Hello, the number is: 13
>>> class PyMyClass(MyClass):
... def add_int(self, i):
... # python side override (CPython only)
... return self.m_data + 2*i
...
>>> cppyy.cppdef("int callback(MyClass* m, int i) { return m->add_int(i); }")
True
>>> cppyy.gbl.callback(m, 2)  # calls C++ add_int
15
>>> cppyy.gbl.callback(PyMyClass(), 2)  # calls Python-side override
5
>>>
```

With a modern C++ compiler having its back, cppyy is future-proof. Consider the following session using boost::any, a capsule-type that allows for heterogeneous containers in C++. The Boost library is well known for its no holds barred use of modern C++ and heavy use of templates:

```python
>>> import cppyy
>>> cppyy.include('boost/any.hpp')  # assumes you have boost installed
>>> from cppyy.gbl import std, boost
>>> val = boost.any()  # the capsule
>>> val._assign_(std.vector<int>())  # assign it a std::vector<int>
True
>>> val[0]
0
>>> val[1] = 2
>>> val[0]  # standard access
0
```
(continues on next page)
Of course, there is no reason to use Boost from Python (in fact, this example calls out for *pythonizations*), but it shows that cppyy seamlessly supports many advanced C++ features.

cppyy is available for both CPython (v2 and v3) and PyPy, reaching C++-like performance with the latter. It makes judicious use of precompiled headers, dynamic loading, and lazy instantiation, to support C++ programs consisting of millions of lines of code and many thousands of classes. cppyy minimizes dependencies to allow its use in distributed, heterogeneous, development environments.
For convenience, this changelog keeps tracks of changes with version numbers of the main cppyy package, but many of the actual changes are in the lower level packages, which have their own releases. See packages, for details on the package structure. PyPy support lags CPython support.

1.1 master: 2.5.0

- Added a generic “cppyy.default” object

1.2 2022-06-29: 2.4.0

- Support for free (templated) functions in Numba
- Basic support for unboxing C++ public data members in Numba
- Basic support for calling methods of C++ structs in Numba
- Added conventional `__cpp_reflex__` method for inspection in Numba
- Support for globally overloaded ordering operators
- Special cases for `__repr__/__str__` returning C++ stringy types
- Fix lookup of templates of function with template args
- Correct typing of int8_t/uint8_t enums
- Basic support for hidden enums
- Support function pointer returns and optimize function point variables
- Fix reuse of CPPOverload proxies in vector calls from different threads
- Use `-march=native` instead of checking the cpu for avx
- Workaround for handling exceptions from JITed code on ARM
• Drop from cppyy.interactive import * from CPython 3.11
• Fix regression in converting std::vector<T* to list
• Update to the latest patch version of Cling (from 6.26.04)

1.3 2022-04-03: 2.3.1

• Use portable type Py_ssize_t instead of ssize_t

1.4 2022-03-08: 2.3.0

• CUDA support (up to version 10.2)
• Allow std::string_view<char> initialization from Python str (copies)
• Provide access to extern “C” declared functions in namespaces
• Support for (multiple and nested) anonymous structs
• Pull forward upstream patch for PPC
• Only apply system_dirs patch (for asan) on Linux
• Add not-yet loaded classes to namespaces in dir()
• Fix lookup of templates of function with template args
• Fix lookup of templates types with << in name
• Fix regression for accessing char16_t data member arrays
• Add custom __reshape__ method to CPPInstance to allow array cast
• Prioritize callee exceptions over bindings exceptions
• Prevent infinite recursion when instantiating class with no constructors

1.5 2021-11-14: 2.2.0

• Migrated repos to github/wlav
• Properly resolve enum type of class enums
• Get proper shape of void* and enum arrays
• Fix access to (const) ref data members
• Fix sometimes PCH uninstall issue
• Fix argument passing of fixed arrays of pointers
• Include all gcc system paths (for asan)
• Initial support for Apple M1
1.6 2021-07-17: 2.1.0

- Support for vector calls with CPython 3.8 and newer
- Support for typed C++ literals as defaults when mixing with keywords
- Enable reshaping of multi-dim LowLevelViews
- Refactored multi-dim arrays and support for multi-dim assignment
- Support tuple-based indexing for multi-dim arrays
- Direct support for C’s _Complex (_Complex_double/_float on Windows)
- sizeof() forwards to ctypes.sizeof() for ctypes’ types
- Upgrade cmake fragments for Clang9
- Prevent clash with Julia’s LLVM when loading cppyy into PyCall
- Upgrade to latest Cling patch release

1.7 2021-05-14: 2.0.0

- Upgrade to latest Cling based on Clang/LLVM 9
- Make C++17 the default standard on Windows

1.8 2021-04-28: 1.9.6

- Reverse operators for std::complex targeting Python’s complex
- Version the precompiled header with the cppyy-cling package version
- Cover more iterator protocol use cases
- Add missing cppyy/__pyinstaller pkg to sdist
- Single-inheritance support for cross-inherited templated constructors
- Disallow float -> const long long& conversion
- Capture python exception message string in PyException from callbacks
- Thread safety in enum lookups

1.9 2021-03-22: 1.9.5

- Do not regulate direct smart pointers (many to one can lead to double deletion)
- Use pkg_resources of CPyCppyy, if available, to find the API include path
1.10 2021-03-17: 1.9.4

- Fix for installing into a directory that has a space in the name
- Fix empty collection printing through Cling on 64b Windows
- Fix accidental shadowing of derived class typedefs by same names in base
- Streamlined templated function lookups in namespaces
- Fix edge cases when decomposing std::function template arguments
- Enable multi-cross inheritance with non-C++ python bases
- Support Bound C++ functions as template argument
- Python functions as template arguments from __annotations__ or __cpp_name__
- Removed functions/apis deprecated in py3.9
- Improved support for older pip and different installation layouts

1.11 2021-02-15: 1.9.3

- Wheels for Linux now follow manylinux2014
- Enable direct calls of base class’ methods in Python cross-overrides
- cppyy.bind_object can now re-cast types, incl. Python cross-derived ones
- Python cross-derived objects send to (and owned by) C++ retain Python state
- Ignore, for symbol lookups, libraries that can not be reloaded
- Use PathCanonicalize when resolving paths on Windows
- Add more ways of finding the backend library
- Improve error reporting when failed to find the backend library
- Workaround for mixing std::endl in JIT-ed and compiled code on Windows 32b
- Fixed a subtle crash that arises when an invalid using is the last method
- Filter -fno-plt (coming from anaconda builds; not understood by Cling)
- Fixed memory leak in generic base __str__

1.12 2021-01-05: 1.9.2

- Added cppyy.types module for exposing cppyy builtin types
- Improve numpy integration with custom __array__ methods
- Allow operator overload resolution mixing class and global methods
- Installation fixes for PyPy when using pip
1.13 2020-11-23: 1.9.1

• Fix custom installer in pip sdist

1.14 2020-11-22: 1.9.0

• In-tree build resolving build/install order for PyPy with pyproject.toml
• \texttt{std::string} not converted to \texttt{str} on function returns
• Cover more use cases where C string memory can be managed
• Automatic memory management of converted python functions
• Added pyinstaller hooks (https://stackoverflow.com/questions/64406727)
• Support for enums in pseudo-constructors of aggregates
• Fixes for overloaded/split-access protected members in cross-inheritance
• Support for deep, mixed, hierarchies for multi-cross-inheritance
• Added \texttt{tp_iter} method to low level views

1.15 2020-11-06: 1.8.6

• Fix preprocessor macro of CPyCppyy header for Windows/MSVC

1.16 2020-10-31: 1.8.5

• Fix leaks when using vector iterators on Py3/Linux

1.17 2020-10-10: 1.8.4

• \texttt{std::string} globals/data members no longer automatically converted to \texttt{str}
• New methods for \texttt{std::string} to allow \texttt{str} interchangability
• Added a \texttt{decode} method to \texttt{std::string}
• Add pythonized \texttt{__contains__} to \texttt{std::set}
• Fix constructor generation for aggregates with static data
• Fix performance bug when using implicit conversions
• Fix memory overwrite when parsing during sorting of methods
• PyPy pip install again falls back to setup.py install
1.18 2020-09-21: 1.8.3

- Add initializer constructors for PODs and aggregates
- Use actual underlying type for enums, where possible
- Enum values remain instances of their type
- Expose enum underlying type name as __underlying__ and __ctype__.
- Strictly follow C++ enum scoping rules
- Same enum in transparent scope refers to same type
- More detailed enum \texttt{repr()} printing, where possible
- Fix for (extern) explicit template instantiations in namespaces
- Throw objects from an std::tuple a life line
- Global pythonizers now always run on all classes
- Simplified iteration over STL-like containers defining \texttt{begin()/end()}

1.19 2020-09-08: 1.8.2

- Add \texttt{cppyy.set_debug()} to enable debug output for fixing template errors
- Cover more partial template instantiation use cases
- Force template instantiation if necessary for type deduction (i.e. \texttt{auto})

1.20 2020-09-01: 1.8.1

- Setup build dependencies with pyproject.toml
- Simplified flow of pointer types for callbacks and cross-derivation
- Pointer-comparing objects performs auto-cast as needed
- Add main dimension for ptr-ptr to builtin returns
- Transparent handling of ptr-ptr to instance returns
- Stricter handling of bool type in overload with int types
- Fix uint64_t template instantiation regression
- Do not filter out enum data for \texttt{__dir__}
- Fix lookup of interpreter-only explicit instantiations
- Fix inconsistent naming of std types with char_traits
- Further hiding of upstream code/dependencies
- Extended documentation
1.21 2020-07-12: 1.8.0

- Support mixing of Python and C++ types in global operators
- Capture Cling error messages from cppdef and include in the Python exception
- Add a cppexec method to evaluate statements in Cling’s global scope
- Support initialization of std::array<> from sequences
- Support C++17 style initialization of common STL containers
- Allow base classes with no virtual destructor (with warning)
- Support const by-value returns in Python-side method overrides
- Support for cross-language multiple inheritance of C++ bases
- Allow for pass-by-value of std::unique_ptr through move
- Reduced dependencies on upstream code
- Put remaining upstream code in CppyyLegacy namespace

1.22 2020-06-06: 1.7.1

- Expose protected members in Python derived classes
- Support for deep Python-side derived hierarchies
- Do not generate a copy ctor in the Python derived class if private
- include, c_include, and cppdef now raise exceptions on error
- Allow mixing of keywords and default values
- Fix by-ptr return of objects in Python derived classes
- Fix for passing numpy boolean array through bool*
- Fix assignment to const char* data members
- Support __restrict and __restrict__ in interfaces
- Allow passing sequence of strings through const char*[] argument

1.23 2020-04-27: 1.7.0

- Upgrade to cppyy-cling 6.20.4
- Pre-empt upstream’s propensity of making std classes etc. global
- Allow initialization of std::map from dict with the correct types
- Allow initialization of std::set from set with the correct types
- Add optional nonst/non-const selection to __overload__
- Automatic smartification of normal object passed as smartptr by value
- Fix crash when handing a by-value object to make_shared
- Fixed a few shared/unique_ptr corner cases
• Fixed conversion of `std::function` taking an STL class parameter
• No longer attempt auto-cast on classes without RTTI
• Fix for `iter()` iteration on generic STL container

1.24 2020-03-15: 1.6.2

• Respect `__len__` when using bound C++ objects in boolean expressions
• Support UTF-8 encoded `unicode` through `std::string`
• Support for `std::byte`
• Enable assignment to function pointer variable
• Allow passing `cppyy.nullptr` where a function pointer is expected
• Disable copy construction into constructed object (use `__assign__` instead)
• Cover more cases when to set a lifeline
• Lower priority of implicit conversion to temporary with `initializer_list` ctor
• Add type reduction pythonization for trimming expression template type trees
• Allow mixing `std::string` and `str` as dictionary keys
• Support C-style pointer-to-struct as array
• Support C-style enum variable declarations
• Fixed `const_iterator` by-ref return type regression
• Resolve enums into the actual underlying type instead of `int`
• Remove `-isystem` from `makepch` flags
• Extended documentation

1.25 2020-01-04: 1.6.1

• Mapped C++ exception reporting detailing
• Mapped C++ exception cleanup bug fix
• STL vector constructor passes the CPython sequence construction
• STL vector slicing passes the CPython sequence slicing tests
• Extended documentation

1.26 2019-12-23: 1.6.0

• Classes derived from `std::exception` can be used as Python exceptions
• Template handling detailing (for Eigen)
• Support keyword arguments
• Added `add_library_path` at module level
• Extended documentation
• Fix regression bugs: #176, #179, #180, #182

1.27 2019-11-07: 1.5.7

• Allow implicit conversions for move arguments
• Choose vector over initializer_list if part of the template argument list

1.28 2019-11-03: 1.5.6

• Added public C++ API for some CPyCppyy core functions (CPython only)
• Support for char16_t/char16_t* and char32_t/char32_t*
• Respect std::hash in __hash__
• Fix iteration over vector of shared_ptr
• Length checking on global variables of type ‘signed char[N]’
• Properly support overloaded templated with non-templated __setitem__
• Support for array of const char* as C-strings
• Enable type resolution of clang’s builtin __type_pack_element
• Fix for inner class type naming when it directly declares a variable

1.29 2019-10-16: 1.5.5

• Added signal -> exception support in cppyy.ll
• Support for lazily combining overloads of operator*/+-
• No longer call trivial destructors
• Support for free function unary operators
• Refactored and optimized operator==/!= usage
• Refactored converters/executors for lower memory usage
• Bug fixes in rootcling and _cppyy_generator.py

1.30 2019-09-25: 1.5.4

• operator+/* now respect C++-side associativity
• Fix potential crash if modules are reloaded
• Fix some portability issues on Mac/Windows of cppyy-cling
1.31 2019-09-15: 1.5.3

• Performance improvements
• Support for anonymous/unnamed/nested unions
• Extended documentation

1.32 2019-09-06: 1.5.2

• Added a “low level” interface (cppyy.ll) for hard-casting and ll types
• Extended support for passing ctypes arguments through ptr, ref, ptr-ptr
• Fixed crash when creating an array of instances of a scoped inner struct
• Extended documentation

1.33 2019-08-26: 1.5.1

• Upgrade cppyy-cling to 6.18.2
• Various patches to upstream’s pre-compiled header generation and use
• Instantiate templates with larger integer types if argument values require
• Improve cppyy.interactive and partially enable it on PyPy, IPython, etc.
• Let __overload__ be more flexible in signature matching
• Make list filtering of dir(cppyy.gbl) on Windows same as Linux/Mac
• Extended documentation

1.34 2019-08-18: 1.5.0

• Upgrade cppyy-cling to 6.18.0
• Allow python-derived classes to be used in templates
• Stricter template resolution and better caching/performance
• Detailed memory management for make_shared and shared_ptr
• Two-way memory management for cross-inherited objects
• Reduced memory footprint of proxy objects in most common cases
• Allow implicit conversion from a tuple of arguments
• Data set on namespaces reflected on C++ even if data not yet bound
• Generalized resolution of binary operators in wrapper generation
• Proper naming of arguments in namespaces for std::function<>
• Cover more cases of STL-liker iterators
• Allow std::vector initialization with a list of constructor arguments
• Consistent naming of __cppname__ to __cpp_name__
• Added __set_lifeline__ attribute to overloads
• Fixes to the cmake fragments for Ubuntu
• Fixes linker errors on Windows in some configurations
• Support C++ naming of typedef of bool types
• Basic views of 2D arrays of builtin types
• Extended documentation

1.35 2019-07-01 : 1.4.12

• Automatic conversion of python functions to std::function arguments
• Fix for templated operators that can map to different python names
• Fix on p3 crash when setting a detailed exception during exception handling
• Fix lookup of std::nullopt
• Fix bug that prevented certain templated constructors from being considered
• Support for enum values as data members on “enum class” enums
• Support for implicit conversion when passing by-value

1.36 2019-05-23 : 1.4.11

• Workaround for JITed RTTI lookup failures on 64b MS Windows
• Improved overload resolution between f(void*) and f<>(T*)
• Minimal support for char16_t (Windows) and char32_t (Linux/Mac)
• Do not unnecessarily autocast smart pointers

1.37 2019-05-13 : 1.4.10

• Imported several FindCppyy.cmake improvements from Camille’s cppyy-bbhash
• Fixes to cppyy-generator for unresolved templates, void, etc.
• Fixes in typedef parsing for template arguments in unknown namespaces
• Fix in templated operator code generation
• Fixed ref-counting error for instantiated template methods

1.38 2019-04-25 : 1.4.9

• Fix import error on pypy-c
1.39 2019-04-22 : 1.4.8

- `std::tuple` is now iterable for return assignments w/o `tie`
- Support for opaque handles and typedefs of pointers to classes
- Keep unresolved enums desugared and provide generic converters
- Treat `int8_t` and `uint8_t` as integers (even when they are chars)
- Fix lookup of enum values in global namespace
- Backported name mangling (esp. for static/global data lookup) for 32b Windows
- Fixed more linker problems with malloc on 64b Windows
- Consistency in buffer length calculations and `c_int/c_uint` handling on Windows
- Properly resolve overloaded functions with using of templates from bases
- Get templated constructor info from decl instead of name comparison
- Fixed a performance regression for free functions.

1.40 2019-04-04 : 1.4.7

- Enable `initializer_list` conversion on Windows as well
- Improved mapping of `operator()` for indexing (e.g. for matrices)
- Implicit conversion no longer uses global state to prevent recursion
- Improved overload reordering
- Fixes for templated constructors in namespaces

1.41 2019-04-02 : 1.4.6

- More transparent use of smart pointers such as `shared_ptr`
- Expose versioned `std` namespace through using on Mac
- Improved error handling and interface checking in cross-inheritance
- Argument of (const/non-const) ref types support in callbacks/cross-inheritance
- Do template argument resolution in order: reference, pointer, value
- Fix for return type deduction of resolved but uninstantiated templates
- Fix wrapper generation for defaulted arguments of private types
- Several linker fixes on 64b Windows

1.42 2019-03-25 : 1.4.5

- Allow templated free functions to be attached as methods to classes
- Allow cross-derivation from templated classes
• More support for ‘using’ declarations (methods and inner namespaces)
• Fix overload resolution for std::set::rbegin() / rend() operator==
• Fixes for bugs #61, #67
• Several pointer truncation fixes for 64b Windows
• Linker and lookup fixes for Windows

1.43 2019-03-20 : 1.4.4

• Support for ‘using’ of namespaces
• Improved support for alias templates
• Faster template lookup
• Have rootcling/genreflex respect compile-time flags (except for --std if overridden by CLING_EXTRA_FLAGS)
• Utility to build dictionarys on Windows (32/64)
• Name mangling fixes in Cling for JITed global/static variables on Windows
• Several pointer truncation fixes for 64b Windows

1.44 2019-03-10 : 1.4.3

• Cross-inheritance from abstract C++ base classes
• Preserve ‘const’ when overriding virtual functions
• Support for by-ref (using ctypes) for function callbacks
• Identity of nested typedef’d classes matches actual
• Expose function pointer variables as std::function’s
• More descriptive printout of global functions
• Ensure that standard pch is up-to-date and that it is removed on uninstall
• Remove standard pch from wheels on all platforms
• Add -cxxflags option to rootcling
• Install clang resource directory on Windows
Copyright (c) 2017-2021, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. (2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such Enhancements or derivative works thereof, in binary and source code form.
2.1 Additional copyright holders

In addition to LBNL/UC Berkeley, this package contains files copyrighted by one or more of the following people and organizations, and licensed under the same conditions (except for some compatible licenses as retained in the source code):

- CERN
- Lucio Asnaghi
- Simone Bacchio
- Robert Bradshaw
- Ellis Breen
- Antonio Cuni
- Aditi Dutta
- Shaheed Haque
- Jonsomi
- Max Kolin
- Alvaro Moran
- Tarmo Pikaro
- Matti Picus
- Camille Scott
- Toby StClere-Smithe
- Stefan Wunsch

Conda-forg recipes were provided by Julian Rueth and Isuru Fernando.

2.2 External code

The create_src_directory.py script will pull in ROOT and LLVM sources, which are licensed differently:

LLVM: distributed under University of Illinois/NCSA Open Source License https://opensource.org/licenses/UoI-NCSA.php

ROOT: distributed under LGPL 2.1 https://root.cern.ch/license

The ROOT and LLVM/Clang codes are modified/patched, as part of the build process.
cppyy requires a (modern) C++ compiler. When installing through conda-forge, conda will install the compiler for you, to match the other conda-forge packages. When using pip and the wheels from PyPI, you minimally need gcc5, clang5, or MSVC’17.

Note: On Windows, a command prompt from which to run Python (or Python run directly) needs to be opened from within an environment with MSVC setup, otherwise the compiler will not be accessible.

When installing from source, the only requirement is full support for C++11 (e.g. minimum gcc 4.8.1 on GNU/Linux), but older compilers than the ones listed for the wheels have not been tested.

With CPython on Linux or MacOS, probably by far the easiest way to install cppyy, is through conda-forge on Anaconda (or miniconda). A Windows recipe for conda is not available yet, but is forthcoming, so use pip for that platform for now (see below). PyPI always has the authoritative releases (conda-forge pulls the sources from there), so conda-forge may sometimes lag PyPI. If you absolutely need the latest release, use PyPI or consider building from source.

To install using conda, create and/or activate your (new) work environment and install from the conda-forge channel:

```
$ conda create -n WORK
$ conda activate WORK
(WORK) $ conda install -c conda-forge cppyy
(WORK) [current compiler] $
```

To install with pip through PyPI, it is recommend to use virtualenv (or module venv for modern pythons). The use of virtualenv prevents pollution of any system directories and allows you to wipe out the full installation simply by removing the virtualenv created directory (“WORK” in this example):

```
$ virtualenv WORK
$ source WORK/bin/activate
(WORK) $ python -m pip install cppyy
(WORK) $
```
If you use the `--user` option to `pip` and use `pip` directly on the command line, instead of through `python`, make sure that the `PATH` envvar points to the bin directory that will contain the installed entry points during the installation, as the build process needs them. You may also need to install `wheel` first if you have an older version of `pip` and/or do not use virtualenv (which installs wheel by default). Example:

```
$ python -m pip install wheel --user
$ PATH=$HOME/.local/bin:$PATH python -m pip install cppyy --user
```

3.1 Wheels on PyPI

Wheels for the backend (cppyy-cling) are available on PyPI for GNU/Linux, MacOS-X, and MS Windows (both 32b and 64b). The Linux wheels are built for manylinux2014, but with the dual ABI enabled. The wheels for MS Windows were build with MSVC Community Edition 2017.

There are no wheels for the CPyCppyy and cppyy packages, to allow the C++ standard chosen to match the local compiler.

3.2 pip with conda

Although installing `cppyy` through conda-forge is recommended, it is possible to build/install with `pip` under Anaconda/miniconda.

Typical Python extensions only expose a C interface for use through the Python C-API, requiring only calling conventions (and the Python C-API version, of course) to match to be binary compatible. Here, cppyy differs because it exposes C++ APIs: it thus requires a C++ run-time that is ABI compatible with the C++ compiler that was used during build-time.

A set of modern compilers is available through conda-forge, but are only intended for use with conda-build. In particular, the corresponding run-time is installed (for use through rpath when building), but not set up. That is, the conda compilers are added to `PATH` but not their libraries to `LD_LIBRARY_PATH` (Mac, Linux: `PATH` for both on MS Windows). Thus, you get the conda compilers and your system libraries mixed in the same build environment, unless you set `LD_LIBRARY_PATH` (PATH on Windows) explicitly, e.g. by adding `$CONDA_PREFIX/lib`. Note that the conda documentation recommends against this. Furthermore, the compilers from conda-forge are not vanilla distributions: header files have been modified, which can lead to parsing problems if your system C library does not support C11, for example.

Nevertheless, with the above caveats, if your system C/C++ run-times are new enough, the following can be made to work:

```
$ conda create -n WORK
$ conda activate WORK
(WORK) $ conda install python
(WORK) $ conda install -c conda-forge compilers
(WORK) [current compiler] $ python -m pip install cppyy
```

3.3 C++ standard with pip

The C++17 standard is the default for Mac and Linux (both PyPI and conda-forge); but it is C++14 for MS Windows (compiler limitation). When installing from PyPI using `pip`, you can control the standard selection by setting the `STDCXX` envvar to ‘17’, ‘14’, or ‘11’ (for Linux, the backend does not need to be recompiled). Note that the build will lower your choice if the compiler used does not support a newer standard.
3.4 Install from source

To build an existing release from source, tell pip to not download any binary wheels. Build-time only dependencies are cmake (for general build), python (obviously, but also for LLVM), and a modern C++ compiler (one that supports at least C++11). Use the envvar STDCXX to control the C++ standard version; MAKE to change the make command, MAKE_NPROCS to control the maximum number of parallel jobs allowed, and VERBOSE=1 to see full build/compile commands. Example (using --verbose to see pip progress):

```
$ STDCXX=17 MAKE_NPROCS=32 pip install --verbose cppyy --no-binary=cppyy-cling
```

Compilation of the backend, which contains a customized version of Clang/LLVM, can take a long time, so by default the setup script will use all cores (x2 if hyperthreading is enabled). Once built, however, the wheel of cppyy-cling is reused by pip for all versions of CPython and for PyPy, thus the long compilation is needed only once for all different versions of Python on the same machine.

See the section on repos for more details/options.

3.5 PyPy

PyPy 5.7 and 5.8 have a built-in module cppyy. You can still install the cppyy package, but the built-in module takes precedence. To use cppyy, first import a compatibility module:

```
$ pypy
[PyPy 5.8.0 with GCC 5.4.0] on linux2
>>> import cppyyCompat, cppyy
>>> 
```

You may have to set LD_LIBRARY_PATH appropriately if you get an EnvironmentError (it will indicate the needed directory).

Note that your python interpreter (whether CPython or pypy-c) may not have been linked by the C++ compiler. This can lead to problems during loading of C++ libraries and program shutdown. In that case, re-linking is highly recommended.

Very old versions of PyPy (5.6.0 and earlier) have a built-in cppyy based on Reflex, which is less feature-rich and no longer supported. However, both the distribution utilities and user-facing Python codes are very backwards compatible, making migration straightforward.

3.6 Precompiled header

For performance reasons (reduced memory and CPU usage), a precompiled header (PCH) of the system and compiler header files will be installed or, failing that, generated on startup. Obviously, this PCH is not portable and should not be part of any wheel.

Some compiler features, such as AVX, OpenMP, fast math, etc. need to be active during compilation of the PCH, as they depend both on compiler flags and system headers (for intrinsics, or API calls). You can control compiler flags through the EXTRA_CLING_ARGS envvar and thus what is active in the PCH. In principle, you can also change the C++ language standard by setting the appropriate flag on EXTRA_CLING_ARGS and rebuilding the PCH. However, if done at this stage, that disables some automatic conversion for C++ types that were introduced after C++11 (such as string_view and optional).

If you want multiple PCHs living side-by-side, you can generate them yourself (note that the given path must be absolute):
>>> import cppyy_backend.loader as l
>>> l.set_cling_compile_options(True) # adds defaults to EXTRA_CLING_ARGS
>>> install_path = '/full/path/to/target/location/for/PCH'
>>> l.ensure_precompiled_header(install_path)

You can then select the appropriate PCH with the CLING_STANDARD_PCH envvar:

```bash
$ export CLING_STANDARD_PCH=/full/path/to/target/location/for/PCH/allDict.cxx.pch
```

Or disable it completely by setting that envvar to “none”.

Note: Without the PCH, the default C++ standard will be the one with which `cppyy-cling` was built.
This is a basic guide to try cppyy and see whether it works for you. Large code bases will benefit from more advanced features such as pythonizations for a cleaner interface to clients; precompiled modules for faster parsing and reduced memory usage; “dictionaries” to package locations and manage dependencies; and mapping files for automatic, lazy, loading. You can, however, get very far with just the basics and it may even be completely sufficient for small packages with fewer classes.

cppyy works by parsing C++ definitions through cling, generating tiny wrapper codes to honor compile-time features and create standardized interfaces, then compiling/linking those wrappers with the clang JIT. It thus requires only those two ingredients: C++ definitions and linker symbols. All cppyy uses, the basic and the more advanced, are variations on the theme of bringing these two together at the point of use.

Definitions typically live in header files and symbols in libraries. Headers can be loaded with cppyy.include and libraries with the cppyy.load_library call. Loading the header is sufficient to start exploring, with cppyy.gbl the starting point of all things C++, while the linker symbols are only needed at the point of first use.

Here is an example using the zlib library, which is likely available on your system:

```python
>>> import cppyy
>>> cppyy.include('zlib.h') # bring in C++ definitions
>>> cppyy.load_library('libz') # load linker symbols
>>> cppyy.gbl.zlibVersion() # use a zlib API
'1.2.11'
```

Since header files can include other header files, it is easy to aggregate all relevant ones into a single header to include. If there are project-specific include paths, you can add those paths through cppyy.add_include_path. If a header is C-only and not set for use with C++, use cppyy.c_include, which adds extern "C" around the header.

Library files can be aggregated by linking all relevant ones to a single library to load. Using the linker for this purpose allows regular system features such as rpath and envs such as LD_LIBRARY_PATH to be applied as usual. Note that any mechanism that exposes the library symbols will work. For example, you could also use the standard module ctypes through ctypes.CDLL with the ctypes.RTLD_GLOBAL option.

To explore, start from cppyy.gbl to access your namespaces, classes, functions, etc., etc. directly; or use python’s
dir (or tab-completion) to see what is available. Use python's help to see list the methods and data members of classes and see the interfaces of functions.

Now try this out for some of your own headers, libraries, and APIs!
The detailed feature lists have examples that work using a header file, and there is the tutorial that shows mixing of C++ and Python interactively. The cookie cutter repo provides a good cmake based example. More complete examples that show packaging include these repos (in alphabetical order):

- bgfx-python
- cppyy-bbhash
- dnpy
- PyEtaler
- pyflatsurf
- gco-cppyy
- gmpxxyy
- cppyy-knearestneighbors
- linear_algebra
- lyncs
- popsicle
- libsemigroups_cppyy
- SopraClient
- python-v spline
Please report bugs, ask questions, request improvements, and post general comments on the issue tracker or on stack overflow (marked with the “cppyy” tag).
C++ has a far richer set of built-in types than Python. Most Python code can remain relatively agnostic to that, and `cppyy` provides automatic conversions as appropriate. On the other hand, Python built-in types such as lists and maps are far richer than any built-in types in C++. These are mapped to their Standard Template Library equivalents instead. The C++ code used for the examples below can be found [here](#), and it is assumed that that code is loaded before running any of the example code snippets. Download it, save it under the name `features.h`, and simply include it:

```python
>>> import cppyy
>>> cppyy.include('features.h')
```

7.1 Builtins

The selection of built-in data types varies greatly between Python and C++. Where possible, built-in data types map onto the expected equivalent Python types, with the caveats that there may be size differences, different precision or rounding, etc. For example, a C++ `float` is returned as a Python `float`, which is in fact a C++ `double`. If sizes allow, conversions are automatic. For example, a C++ `unsigned int` becomes a Python2 `long` or Python3 `int`, but unsigned-ness is still honored:

```python
>>> cppyy.gbl.gUint 0L
<type 'long'>
>>> type(cppyy.gbl.gUint)
<type 'long'>
>>> cppyy.gbl.gUint = -1
Traceback (most recent call last):
  File "<stdin>"", line 1, in <module>
ValueError: cannot convert negative integer to unsigned
```

On some platforms, 8-bit integer types such as `int8_t` and `uint8_t` are represented as `char` types. For consistency, these are mapped onto Python `int`.
Some types are builtin in Python, but (STL) classes in C++. Examples are `str` vs. `std::string` (see also the Strings section) and `complex` vs. `std::complex`. These classes have been pythonized to behave the same wherever possible. For example, string comparison work directly, and `std::complex` has `real` and `imag` properties:

```python
>>> c = cppyy.gbl.std.complex['double'](1, 2)
>>> c
(1+2j)
>>> c.real, c.imag
(1.0, 2.0)
>>> s = cppyy.gbl.std.string("aap")
>>> type(s)
<class cppyy.gbl.std.string at 0x7fa75edbf8a0>
>>> s == "aap"
True
``` 

To pass an argument through a C++ `char` (signed or unsigned) use a Python string of size 1. In many cases, the explicit C types from module `ctypes` can also be used, but that module does not have a public API (for type conversion or otherwise), so support is somewhat limited.

There are automatic conversions between C++'s `std::vector` and Python's `list` and `tuple`, where possible, as they are often used in a similar manner. These datatypes have completely different memory layouts, however, and the `std::vector` requires that all elements are of the same type and laid out consecutively in memory. Conversion thus requires type checks, memory allocation, and copies. This can be rather expensive. See the section on STL.

7.2 Arrays

Builtin arrays are supported through arrays from module `array` (or any other builtin-type array that implements the Python buffer interface, such as numpy arrays) and a low-level view type from `cppyy` for returns and variable access (that implements the buffer interface as well). Out-of-bounds checking is limited to those cases where the size is known at compile time. Example:

```python
>>> from cppyy.gbl import Concrete
>>> from array import array
>>> c = Concrete()
>>> c.array_method(array('d', [1., 2., 3., 4.]), 4)
1 2 3 4
>>> c.m_data[4]  # static size is 4, so out of bounds
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: buffer index out of range
```
7.3 **Pointers**

When the C++ code takes a pointer or reference type to a specific builtin type (such as an unsigned int for example), then types need to match exactly. `cppyy` supports the types provided by the standard modules `ctypes` and `array` for those cases. Example of using a reference to builtin:

```python
>>> from ctypes import c_uint
>>> u = c_uint(0)
>>> c.uint_ref_assign(u, 42)
>>> u.value
42
```

For objects, an object, a pointer to an object, and a smart pointer to an object are represented the same way, with the necessary (de)referencing applied automatically. Pointer variables are also bound by reference, so that updates on either the C++ or Python side are reflected on the other side as well.

7.4 **Enums**

Named, anonymous, and class enums are supported. The Python-underlying type of an enum is implementation dependent and may even be different for different enums on the same compiler. Typically, however, the types are int or unsigned int, which translates to Python’s int or long on Python2 or class int on Python3. Separate from the underlying, all enums have their own Python type to allow them to be used in template instantiations:

```python
>>> from cppyy.gbl import kBanana       # classic enum, globally available
>>> print(kBanana)                     # classic enum, globally available
29
>>> cppyy.gbl.EFruit                   # class enum, scoped
<class '__main__.EFruit'>
>>> print(cppyy.gbl.EFruit.kApple)    # class enum, scoped
78
>>> cppyy.gbl.E1                        # C++11 class enum, scoped
Traceback (most recent call last):
  File "<stdin>" ,#include <stdio.h>"
    line 1, in <module>
AttributeError: <namespace cppyy.gbl at 0x7ff2766a4af0> has no attribute 'E1'.
```

7.3. **Pointers**
Both Python and C++ have core types to represent text and these are expected to be freely interchangeable. cppyy makes it easy to do just that for the most common cases, while allowing customization where necessary to cover the full range of diverse use cases (such as different codecs). In addition to these core types, there is a range of other character types, from `const char*` and `std::wstring` to `bytes`, that see much less use, but are also fully supported.

8.1 `std::string`

The C++ core type `std::string` is considered the equivalent of Python's `str`, even as purely implementation-wise, it is more akin to `bytes`: as a practical matter, a C++ programmer would use `std::string` where a Python developer would use `str` (and vice versa), not `bytes`.

A Python `str` is unicode, however, whereas an `std::string` is character based, thus conversions require encoding or decoding. To allow for different encodings, cppyy defers implicit conversions between the two types until forced, at which point it will default to seeing `std::string` as ASCII based and `str` to use the UTF-8 codec. To support this, the bound `std::string` has been pythonized to allow it to be a drop-in for a range of uses as appropriate within the local context.

In particular, it is sometimes necessary (e.g. for function arguments that take a non-const reference or a pointer to non-const `std::string` variables), to use an actual `std::string` instance to allow in-place modifications. The pythonizations then allow their use where `str` is expected. For example:

```python
>>> cppyy.cppexec("std::string gs;")
True
>>> cppyy.gbl.gs = "hello"
>>> type(cppyy.gbl.gs)  # C++ std::string type
<class cppyy.gbl.std.string at 0x7fbb02a89880>
>>> d = {"hello": 42}  # dict filled with str
>>> d[cppyy.gbl.gs]     # drop-in use of std::string -> str
42
>>> 
```
To handle codecs other than UTF-8, the `std::string` pythonization adds a decode method, with the same signature as the equivalent method of `bytes`. If it is known that a specific C++ function always returns an `std::string` representing unicode with a codec other than UTF-8, it can in turn be explicitly pythonized to do the conversion with that codec.

8.2 std::string_view

It is possible to construct a (char-based) `std::string_view` from a Python `str`, but it requires the unicode object to be encoded and by default, UTF-8 is chosen. This will give the expected result if all characters in the `str` are from the ASCII set, but otherwise it is recommend to encode on the Python side and pass the resulting `bytes` object instead.

8.3 std::wstring

C++’s “wide” string, `std::wstring`, is based on `wchar_t`, a character type that is not particularly portable as it can be 2 or 4 bytes in size, depending on the platform. cppyy supports `std::wstring` directly, using the `wchar_t` array conversions provided by Python’s C-API.

8.4 const char*

The C representation of text, `const char*`, is problematic for two reasons: it does not express ownership; and its length is implicit, namely up to the first occurrence of '\0'. The first can, up to an extent, be ameliorated: there are a range of cases where ownership can be inferred. In particular, if the C string is set from a Python `str`, it is the latter that owns the memory and the bound proxy of the former that in turn owns the (unconverted) `str` instance. However, if the `const char*`’s memory is allocated in C/C++, memory management is by necessity fully manual. Length, on the other hand, can only be known in the case of a fixed array. However even then, the more common case is to use the fixed array as a buffer, with the actual string still only extending up to the '\0' char, so that is assumed. (C++’s `std::string` suffers from none of these issues and should always be preferred when you have a choice.)

8.5 char*

The C representation of a character array, `char*`, has all the problems of `const char*`, but in addition is often used as “data array of 8-bit int”.

8.6 character types

cppyy directly supports the following character types, both as single variables and in array form: `char, signed char, unsigned char, wchar_t, char16_t, and char32_t.`
Both Python and C++ support object-oriented code through classes and thus it is logical to expose C++ classes as Python ones, including the full inheritance hierarchy.

The C++ code used for the examples below can be found [here](#), and it is assumed that that code is loaded at the start of any session. Download it, save it under the name `features.h`, and load it:

```python
>>> import cppyy
>>> cppyy.include('features.h')
```

9.1 Basics

All bound C++ code starts off from the global C++ namespace, represented in Python by `gbl`. This namespace, as any other namespace, is treated as a module after it has been loaded. Thus, we can import C++ classes that live underneath it:

```python
>>> from cppyy.gbl import Concrete
>>> Concrete
<class cppyy.gbl.Concrete at 0x2058e30>
```

Placing classes in the same structure as imposed by C++ guarantees identity, even if multiple Python modules bind the same class. There is, however, no necessity to expose that structure to end-users: when developing a Python package that exposes C++ classes through `cppyy`, consider `cppyy.gbl` an “internal” module, and expose the classes in any structure you see fit. The C++ names will continue to follow the C++ structure, however, as is needed for e.g. pickling:

```python
>>> from cppyy.gbl import Namespace
>>> Concrete == Namespace.Concrete
False
>>> n = Namespace.Concrete.NestedClass()
>>> type(n)
```

(continues on next page)
9.2 Constructors

Python and C++ both make a distinction between allocation (__new__ in Python, operator new in C++) and initialization (__init__ in Python, the constructor call in C++). When binding, however, there comes a subtle semantic difference: the Python __new__ allocates memory for the proxy object only, and __init__ initializes the proxy by creating or binding the C++ object. Thus, no C++ memory is allocated until __init__. The advantages are simple: the proxy can now check whether it is initialized, because the pointer to C++ memory will be NULL if not; it can be a reference to another proxy holding the actual C++ memory; and it can now transparently implement a C++ smart pointer. If __init__ is never called, eg. when a call to the base class __init__ is missing in a derived class override, then accessing the proxy will result in a Python ReferenceError exception.

9.3 Destructors

There should not be a reason to call a destructor directly in CPython, but PyPy uses a garbage collector and that makes it sometimes useful to destruct a C++ object where you want it destroyed. Destructors are accessible through the conventional __destruct__ method. Accessing an object after it has been destroyed will result in a Python ReferenceError exception.

9.4 Inheritance

The output of help shows the inheritance hierarchy, constructors, public methods, and public data. For example, Concrete inherits from Abstract and it has a constructor that takes an int argument, with a default value of 42. Consider:

```python
>>> from cppyy.gbl import Abstract
>>> issubclass(Concrete, Abstract)
True
>>> a = Abstract()
Traceback (most recent call last):
  File "<console>" line 1 in <module>
TypeError: cannot instantiate abstract class 'Abstract'
>>> c = Concrete()
>>> isinstance(c, Concrete)
True
>>> isinstance(c, Abstract)
True
>>> d = Concrete(13)
>>>```
Just like in C++, interface classes that define pure virtual methods, such as `Abstract` does, can not be instantiated, but their concrete implementations can. As the output of `help` showed, the `Concrete` constructor takes an integer argument, that by default is 42.

### 9.5 Cross-inheritance

Python classes that derive from C++ classes can override virtual methods as long as those methods are declared on class instantiation (adding methods to the Python class after the fact will not provide overrides on the C++ side, only on the Python side). Example:

```python
>>> from cppyy.gbl import Abstract, call_abstract_method
>>> class PyConcrete(Abstract):
... def abstract_method(self):
... return "Hello, Python World!\n"
... def concrete_method(self):
... pass
...
>>> pc = PyConcrete()
>>> call_abstract_method(pc)
Hello, Python World!
```

Note that it is not necessary to provide a constructor (`__init__`), but if you do, you **must** call the base class constructor through the `super` mechanism.

### 9.6 Multiple cross-inheritance

Python requires that any multiple inheritance (also in pure Python) has an unambiguous method resolution order (mro), including for classes and thus also for meta-classes. In Python2, it was possible to resolve any mro conflicts automatically, but meta-classes in Python3, although syntactically richer, have functionally become far more limited. In particular, the mro is checked in the builtin class builder, instead of in the meta-class of the meta-class (which in Python3 is the builtin `type` rather than the meta-class itself as in Python2, another limitation, and which actually checks the mro a second time for no reason). The upshot is that a helper is required (`cppyy.multi`) to resolve the mro to support Python3. The helper is written to also work in Python2. Example:

```python
>>> class PyConcrete(cppyy.multi(cppyy.gbl.Abstract1, cppyy.gbl.Abstract2)):
... def abstract_method1(self):
... return "first message"
... def abstract_method2(self):
... return "second message"
...
>>> pc = PyConcrete()
>>> cppyy.gbl.call_abstract_method1(pc)
first message
>>> cppyy.gbl.call_abstract_method2(pc)
second message
```

Contrary to multiple inheritance in Python, in C++ there are no two separate instances representing the base classes. Thus, a single `__init__` call needs to construct and initialize all bases, rather than calling `__init__` on each base independently. To support this syntax, the arguments to each base class should be grouped together in a tuple. If there are no arguments, provide an empty tuple (or omit them altogether, if these arguments apply to the right-most base(s)).
9.7 Methods

C++ methods are represented as Python ones: these are first-class objects and can be bound to an instance. If a method is virtual in C++, the proper concrete method is called, whether or not the concrete class is bound. Similarly, if all classes are bound, the normal Python rules apply:

```python
>>> c.abstract_method()
called Concrete::abstract_method
>>> c.concrete_method()
called Concrete::concrete_method
>>> m = c.abstract_method
>>> m()
called Concrete::abstract_method
>>>
```

9.8 Data members

Data members are implemented as properties, using descriptors. For example, The `Concrete` instances have a public data member `m_int`:

```python
>>> c.m_int, d.m_int
(42, 13)
``` 

Note however, that the data members are typed: setting them results in a memory write on the C++ side. This is different in Python, where references are replaced, and thus any type will do:

```python
>>> c.m_int = 3.14 # a float does not fit in an int
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: int/long conversion expects an integer object
>>> c.m_int = int(3.14)
``` 

Note that `c.m_int` changed, but `d.m_int` did not:

```python
>>> c.m_int, d.m_int
(3, 13)
``` 

Private and protected data members are not accessible, contrary to Python data members, and C++ const-ness is respected:

```python
>>> c.m_const_int = 71 # declared 'const int' in class definition
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: assignment to const data not allowed
``` 

Static C++ data members act like Python class-level data members. They are also represented by property objects and both read and write access behave as expected:

```python
>>> Concrete.s_int # access through class
321
>>> c.s_int = 123 # access through instance
>>> Concrete.s_int
123
```
9.9 Structs/Unions

Structs and unions are both supported, named or anonymous. If the latter, the field are accessible through the parent scope by their declared name. For example:

```cpp
>>> cppyy.cppdef("/
... struct PointXYZ {
... double x, y, z;
... union {
... int offset1;
... struct {
... int offset2;
... float intensity;
... float data_c[4];
... }
... float offset1;
... double x, y, z;
... }
...;
... "");
>>> p = cppyy.gbl.PointXYZI()
>>> type(p.x)
<class 'float'>
>>> p.intensity
5.0
>>> type(p.data_c[1])
<class 'float'>
>>> p.data_c[1] = 3.0
>>> p.intensity
3.0
```
Overridden operator \texttt{new} and \texttt{operator delete}, as well as their array equivalents, are not accessible but will be called as appropriate.

\section*{9.11 Templates}

Templated classes are instantiated using square brackets. (For backwards compatibility reasons, parentheses work as well.) The instantiation of a templated class yields a class, which can then be used to create instances.

Templated classes need not pre-exist in the bound code, just their declaration needs to be available. This is true for e.g. all of STL:

```python
>>> from cppyy.gbl.std import vector
>>> type1 = vector[Concrete]
>>> type2 = vector['Concrete']
>>> type1 == type2
True
```

The template arguments may be actual types or their names as a string, whichever is more convenient. Thus, the following are equivalent:

```python
>>> from cppyy.gbl.std import vector
>>> type1 = vector[Concrete]
>>> type2 = vector['Concrete']
>>> type1 == type2
True
```

\section*{9.12 Typedefs}

Typedefs are simple python references to the actual classes to which they refer.

```python
>>> from cppyy.gbl import Concrete_t
>>> Concrete is Concrete_t
True
```
C++ functions are first-class objects in Python and can be used wherever Python functions can be used, including for dynamically constructing classes.

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of any session. Download it, save it under the name features.h, and load it:

```python
>>> import cppyy
>>> cppyy.include('features.h')
```

Function argument type conversions follow the expected rules, with implicit conversions allowed, including between Python builtin types and STL types, but it is rather more efficient to make conversions explicit.

### 10.1 Free functions

All bound C++ code starts off from the global C++ namespace, represented in Python by gbl. This namespace, as any other namespace, is treated as a module after it has been loaded. Thus, we can directly import C++ functions from it and other namespaces that themselves may contain more functions. All lookups on namespaces are done lazily, thus if loading more headers bring in more functions (incl. new overloads), these become available dynamically.

```python
>>> from cppyy.gbl import global_function, Namespace
>>> global_function == Namespace.global_function
False
>>> from cppyy.gbl.Namespace import global_function
>>> global_function == Namespace.global_function
True
>>> from cppyy.gbl import global_function
>>>```

Free functions can be bound to a class, following the same rules as apply to Python functions: unless marked as static, they will turn into member functions when bound to an instance, but act as static functions when called through the class. Consider this example:
>>> from cppyy.gbl import Concrete, call_abstract_method
>>> c = Concrete()
>>> Concrete.callit = call_abstract_method
>>> Concrete.callit(c)
called Concrete::abstract_method
>>> c.callit()
called Concrete::abstract_method
>>> Concrete.callit = staticmethod(call_abstract_method)
>>> c.callit()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: void ::call_abstract_method(Abstract* a) =>
 TypeError: takes at least 1 arguments (0 given)
>>> c.callit(c)
called Concrete::abstract_method

10.2 Static methods

Class static functions are treated the same way as free functions, except that they are accessible either through the class or through an instance, just like Python’s `staticmethod`.

10.3 Instance methods

For class methods, see the `methods section` under the `classes heading`.

10.4 Operators

Globally defined operators are found lazily (i.e. can resolve after the class definition by loading the global definition or by defining them interactively) and are mapped onto a Python equivalent when possible. See the `operators section` under the `classes heading` for more details.

10.5 Templates

Templated functions (and class methods) can either be called using square brackets ([]) to provide the template arguments explicitly, or called directly, through automatic lookup. The template arguments may either be a string of type names (this results in faster code, as it needs no further lookup/verification) or a list of the actual types to use (which tends to be more convenient).

Note: the Python type `float` maps to the C++ type `float`, even as Python uses a C `double` as its internal representation. The motivation is that doing so makes the Python code more readable (and Python may anyway change its internal representation in the future). The same has been true for Python `int`, which used to be a C `long` internally.

Examples, using `multiply` from `features.h`:

```python
>>> mul = cppyy.gbl.multiply
>>> mul(1, 2)
2
```
```python
>>> mul(1., 5)
5.0
>>> mul[int](1, 1)
1
>>> mul[int, int](1, 1)
1
>>> mul[int, int, float](1, 1)
1.0
>>> mul[int, int](1, 'a')
TypeError: Template method resolution failed:
none of the 6 overloaded methods succeeded. Full details:
int :multiply(int a, int b) =>
  TypeError: could not convert argument 2 (int/long conversion expects an
  integer object)
...
Failed to instantiate "multiply(int,std::string)"
>>> mul['double, double, double'](1., 5)
5.0
>>> 
```

10.6 Overloading

C++ supports overloading, whereas Python supports “duck typing”, thus C++ overloads have to be selected dynamically in response to the available “ducks.” This may lead to additional lookups or template instantiations. However, pre-existing methods (incl. auto-instantiated methods) are always preferred over new template instantiations:

```python
>>> global_function(1.)
# selects 'double' overload
2.718281828459045
>>> global_function(1)
# selects 'int' overload
42
``` 

C++ does a static dispatch at compile time based on the argument types. The dispatch is a selection among overloads (incl. templates) visible at the current parse location in the translation unit. Bound C++ in Python does a dynamic dispatch: it considers all overloads visible globally at the time of execution. These two approaches, even if completely in line with the expectations of the respective languages, are fundamentally different and there can thus be discrepancies in overload selection. For example, if overloads live in different header files and are only an implicit conversion apart; or if types that have no direct equivalent in Python, such as e.g. unsigned short, are used.

It is implicitly assumed that the Python code is correct as-written and there are no warnings or errors for overloads that C++ would consider ambiguous, but only if every possible overload fails. For example, the following overload would be ambiguous in C++ (the value provided is an integer, but can not be passed through a 4-byte int type), but instead cppyy silently accepts promotion to double:

```python
>>> cppyy.cppdef(r""
... void process_data(double) { std::cerr << "processing double\n"; }
... void process_data(int32_t) { std::cerr << "processing int\n"; }"
True
>>> cppyy.gbl.process_data(2**32)  # too large for int32_t type
processing double
``` 

There are two rounds to run-time overload resolution. The first round considers all overloads in sorted order, with promotion but no implicit conversion allowed. The sorting is based on priority scores of each overload. Higher
priority is given to overloads with argument types that can be promoted or align better with Python types. E.g. int is preferred over double and double is preferred over float. If argument conversion fails for all overloads during this round and at least one argument converter has indicated that it can do implicit conversion, a second round is tried where implicit conversion, including instantiation of temporaries, is allowed. The implicit creation of temporaries, although convenient, can be costly in terms of run-time performance.

During some template calls, implicit conversion is not allowed, giving preference to new instantiations (as is the case in C++). If, however, a previously instantiated overload is available and would match with promotion, it is preferred over a (costly) new instantiation, unless a template overload is explicitly selected using template arguments. For example:

```python
>>> cppyy.cppdef(r""
... template<typename T>
... T process_T(T t) { return t; }"")
True
>>> type(cppyy.gbl.process_T(1.0))
<class 'float'>
>>> type(cppyy.gbl.process_T(1))
# selects available "double" overload
<class 'float'>
>>> type(cppyy.gbl.process_T[int](1))
# explicit selection of "int"
<class 'int'>
```

The template parameters used for instantiation can depend on the argument values. For example, if the type of an argument is Python int, but its value is too large for a 4-byte C++ int, the template may be instantiated with, for example, an int64_t instead (if available on the platform). Since Python does not have unsigned types, the instantiation mechanism strongly prefers signed types. However, if an argument value is too large to fit in a signed integer type, but would fit in an unsigned type, then that will be used.

If it is important that a specific overload is selected, then use the __overload__ method to match a specific function signature. An optional boolean second parameter can be used to restrict the selected method to be const (if True) or non-const (if False). The return value of which is a first-class callable object, that can be stored to by-pass the overload resolution:

```python
>>> gf_double = global_function.__overload__('double')
>>> gf_double(1)
# int implicitly promoted
2.718281828459045
```

The __overload__ method only does a lookup; it performs no (implicit) conversions and the types in the signature to match should be the fully resolved ones (no typedefs). To see all overloads available for selection, use help() on the function or look at its __doc__ string:

```python
>>> print(global_function.__doc__)
int ::global_function(int)
double ::global_function(double)
```

For convenience, the :any: signature allows matching any overload, for example to reduce a method to its const overload only, use:
10.7 Overloads and exceptions

Python error reporting is done using exceptions. Failed argument conversion during overload resolution can lead to different types of exceptions coming from respective attempted overloads. The final error report issued if all overloads fail, is a summary of the individual errors, but by Python language requirements it has to have a single exception type. If all the exception types match, that type is used, but if there is an amalgam of types, the exception type chosen will be TypeError. For example, attempting to pass a too large value through uint8_t will uniquely raise a ValueError:

```python
>>> cppyy.cppdef("void somefunc(uint8_t) {"")
True
>>> cppyy.gbl.somefunc(2**16)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: void ::somefunc(uint8_t) =>
    ValueError: could not convert argument 1 (integer to character: value 65536 not in range [0,255])
```

But if other overloads are present that fail in a different way, the error report will be a TypeError:

```python
>>> cppyy.cppdef(r"...\n  void somefunc(uint8_t) {}
  ...\n  void somefunc(std::string) {}
"")
True
>>> cppyy.gbl.somefunc(2**16)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: none of the 2 overloaded methods succeeded. Full details:
  void ::somefunc(std::string) =>
    TypeError: could not convert argument 1
  void ::somefunc(uint8_t) =>
    ValueError: could not convert argument 1 (integer to character: value 65536 not in range [0,255])
```

Since C++ exceptions are converted to Python ones, there is an interplay possible between the two as part of overload resolution and cppyy allows C++ exceptions as such, enabling detailed type disambiguation and input validation. (The original use case was for filling database fields, requiring an exact field label and data type match.)

If, however, all methods fail and there is only one C++ exception (the other exceptions originating from argument conversion, never succeeding to call into C++), this C++ exception will be preferentially reported and will have the original C++ type.

10.8 Return values

Most return types are readily amenable to automatic memory management: builtin returns, by-value returns, (const-)reference returns to internal data, smart pointers, etc. The important exception is pointer returns.

A function that returns a pointer to an object over which Python should claim ownership, should have its __creates__ flag set through its pythonization. Well-written APIs will have clear clues in their naming convention.
about the ownership rules. For example, functions called `New...`, `Clone...`, etc. can be expected to return freshly allocated objects. A basic name-matching in the pythonization then makes it simple to mark all these functions as creators.

The return values are auto-casted.

10.9 *args and **kwds

C++ default arguments work as expected. Keywords, however, are a Python language feature that does not exist in C++. Many C++ function declarations do have formal arguments, but these are not part of the C++ interface (the argument names are repeated in the definition, making the names in the declaration irrelevant: they do not even need to be provided). Thus, although cppyy will map keyword argument names to formal argument names from the C++ declaration, use of this feature is not recommended unless you have a guarantee that the names in C++ the interface are maintained. Example:

```python
>>> from cppyy.gbl import Concrete
>>> c = Concrete()  # uses default argument
>>> c.m_int
42
>>> c = Concrete(13)  # uses provided argument
>>> c.m_int
13
>>> args = (27,)
>>> c = Concrete(*args)  # argument pack
>>> c.m_int
27
>>> c = Concrete(n=17)
>>> c.m_int
17
>>> kwds = {'n' : 18}
>>> c = Concrete(**kwds)
>>> c.m_int
18
```

10.10 Callbacks

Python callables (functions/lambdas/instances) can be passed to C++ through function pointers and/or `std::function`. This involves creation of a temporary wrapper, which has the same life time as the Python callable it wraps, so the callable needs to be kept alive on the Python side if the C++ side stores the callback. Example:

```python
>>> from cppyy.gbl import call_int_int
>>> print(call_int_int.__doc__)
int ::call_int_int(int(*)(int,int) f, int i1, int i2)
>>> def add(a, b):
...     return a+b
...
>>> call_int_int(add, 3, 7)
7
>>> call_int_int(lambda x, y: x*y, 3, 7)
21
```
Python functions can be used to instantiate C++ templates, assuming the type information of the arguments and return types can be inferred. If this can not be done directly from the template arguments, then it can be provided through Python annotations, by explicitly adding the `__annotations__` special data member (e.g. for older versions of Python that do not support annotations), or by the function having been bound by `cppyy` in the first place. For example:

```python
>>> import cppyy
>>> cppyy.cppdef(r""
... template<typename R, typename... U, typename... A>
... R callT(R(*f)(U...), A&&... a) {
...     return f(a...);
... }"")
True
>>> def f(a: 'int') -> 'double':
...     return 3.1415*a
...
>>> cppyy.gbl.callT(f, 2)
6.283
>>> def f(a: 'int', b: 'int') -> 'int':
...     return 3*a*b
...
>>> cppyy.gbl.callT(f, 6, 7)
126
```
Most type conversions are done automatically, e.g. between Python `str` and C++ `std::string` and `const char*`, but low-level APIs exist to perform explicit conversions.

The C++ code used for the examples below can be found [here](#), and it is assumed that that code is loaded at the start of any session. Download it, save it under the name `features.h`, and load it:

```python
>>> import cppyy
>>> cppyy.include('features.h')
```

11.1 Auto-casting

Object pointer returns from functions provide the most derived class known (i.e. exposed in header files) in the hierarchy of the object being returned. This is important to preserve object identity as well as to make casting, a pure C++ feature after all, superfluous. Example:

```python
>>> from cppyy.gbl import Abstract, Concrete
>>> c = Concrete()
>>> Concrete.show_autocast.__doc__
'Abstract* Concrete::show_autocast()'
>>> d = c.show_autocast()
>>> type(d)
<class '__main__.Concrete'>
```

As a consequence, if your C++ classes should only be used through their interfaces, then no bindings should be provided to the concrete classes (e.g. by excluding them using a selection file). Otherwise, more functionality will be available in Python than in C++.

Sometimes, however, full control over a cast is needed. For example, if the instance is bound by another tool or even a 3rd party, hand-written, extension library. Assuming the object supports the PyCapsule or CObject abstraction,
then a C++-style reinterpret_cast (i.e. without implicitly taking offsets into account), can be done by taking and rebinding the address of an object:

```python
>>> from cppyy import addressof, bind_object
>>> e = bind_object(addressof(d), Abstract)
>>> type(e)
<class '__main__.Abstract'>
```

11.2 Operators

If conversion operators are defined in the C++ class and a Python equivalent exists (i.e. all built-in integer and floating point types, as well as `bool`), then these will map onto those Python conversions. Note that `char*` is mapped onto `__str__`. Example:

```python
>>> from cppyy.gbl import Concrete
>>> print(Concrete())
Hello operator const char*!
```

C++ code can overload conversion operators by providing methods in a class or global functions. Special care needs to be taken for the latter: first, make sure that they are actually available in some header file. Second, make sure that headers are loaded in the desired order. I.e. that these global overloads are available before use.
Parts of the Standard Template Library (STL), in particular its container types, are the de facto equivalent of Python’s builtin types. STL is written in C++ and Python bindings of it are fully functional as-is, but are much more useful when pluggable into idiomatic expressions where Python builtin containers are expected (e.g. in list contractions).

There are two extremes to achieve such drop-in behavior: copy into Python builtins, so that the Python-side always deals with true Python objects; or adjust the C++ interfaces to be the same as their Python equivalents. Neither is very satisfactory: the former is not because of the existence of global/static variables and return-by-reference. If only a copy is available, then expected modifications do not propagate. Copying is also either slow (when copying every time) or memory intensive (if the results are cached). Filling out the interfaces may look more appealing, but all operations then involve C++ function calls, which can be slower than the Python equivalents, and C++-style error handling.

Given that neither choice will satisfy all cases, cppyy aims to maximize functionality and minimum surprises based on common use. Thus, for example, std::vector grows a pythonistic __len__ method, but does not lose its C++ size method. Passing a Python container through a const reference to a std::vector will trigger automatic conversion, but such an attempt through a non-const reference will fail since a non-temporary C++ object is required\(^1\) to return any updates/changes.

std::string is almost always converted to Python’s str on function returns (the exception is return-by-reference when assigning), but not when its direct use is more likely such as in the case of (global) variables or when iterating over a std::vector<std::string>.

The rest of this section shows examples of how STL containers can be used in a natural, pythonistic, way.

12.1 std::vector

A std::vector is the most commonly used C++ container type because it is more efficient and performant than specialized types such as list and map, unless the number of elements gets very large. Python has several similar types, from the builtin tuple and list, the array from builtin module array, to “as-good-as-builtin” numpy.ndarray. A vector is more like the latter two in that it can contain only one type, but more like the former two in that

\(^{1}\) The meaning of “temporary” differs between Python and C++: in a statement such as `func(std::vector<int>{{1, 2, 3}})`, there is no temporary as far as Python is concerned, even as there clearly is in the case of a similar statement in C++. Thus that call will succeed even if `func` takes a non-const reference.
it can contain objects. In practice, it can interplay well with all these containers, but e.g. efficiency and performance can differ significantly.

A vector can be instantiated from any sequence, including generators, and vectors of objects can be recursively constructed. If the template type is to be inferred from the argument to the constructor, the first element needs to be accessible, which precludes generators.

```python
>>> from cppyy.gbl.std import vector, pair

>>> v = vector[int](range(10))  # from generator
>>> len(v)
10
>>> v = vector([x for x in range(10)])  # type inferred
>>> type(v)
<class 'cppyy.gbl.std.vector[int]'>
>>> len(v)
10
>>> vp = vector[pair[int, int]](((1, 2), (3, 4)))
>>> len(vp)
2
>>> vp[1][0]
3

To extend a vector in-place with another sequence object, use `+=`, just as for Python’s `list`:

```python
>>> v += range(10, 20)
>>> len(v)
20
```

Indexing and slicing of a vector follows the normal Python slicing rules; printing a vector prints all its elements:

```python
>>> v[1]
1
>>> v[-1]
19
>>> v[-4:]
<cppyy.gbl.std.vector<int> object at 0x7f9051057650>
>>> print(v[-4:])
{ 6, 7, 8, 9 }
```

The usual iteration operations work on vector, but the C++ rules still apply, so a vector that is being iterated over can not be modified in the loop body. (On the plus side, this makes it much faster to iterate over a vector than, say, a numpy ndarray.)

```python
>>> for i in v[2:5]:
... print(i)
... 2
3
4
>>> 2 in v
True
>>> sum(v)
190
```

When a function takes a non-l-value (const-ref, move, or by-value) vector as a parameter, another sequence can be
used and cppyy will automatically generate a temporary. Typically, this will be faster than coding up such a temporary on the Python side, but if the same sequence is used multiple times, creating a temporary once and re-using it will be the most efficient approach:

```cpp
>>> cppyy.cppdef(""
... int sumit1(const std::vector<int>& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }
... int sumit2(std::vector<int> data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }
... int sumit3(const std::vector<int>&& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }"

True
>>> cppyy.gbl.sumit1(range(5))
10
>>> cppyy.gbl.sumit2(range(6))
16
>>> cppyy.gbl.sumit3(range(7))
21

The temporary vector is created using the vector constructor taking an `std::initializer_list`, which is more flexible than constructing a temporary vector and filling it: it allows the data in the container to be implicitly converted (e.g. from `int` to `double` type, or from pointer to derived to pointer to base class). As a consequence, however, with STL containers being allowed where Python containers are, this in turn means that you can pass e.g. an `std::vector<int>` (or `std::list<int>`) where a `std::vector<double>` is expected and a temporary is allowed:

```cpp
>>> cppyy.cppdef(""
... double sumit4(const std::vector<double>& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }"

True
>>> cppyy.gbl.sumit4(vector<int>(range(7)))
21.0
>>> 
```

Normal overload resolution rules continue to apply, however, thus if an overload were available that takes an `const std::vector<int>&`, it would be preferred.

When templates are involved, overload resolution is stricter, to ensure that a better matching instantiation is preferred over an implicit conversion. However, that does mean that as-is, C++ is actually more flexible: it has the curly braces initializer syntax to explicitly infer an `std::initializer_list`, with no such equivalent in Python.

Although in general this approach guarantees the intended result, it does put some strictures on the Python side, requiring careful use of types. However, an easily fixable error is preferable over an implicitly wrong result. Note the type of the init argument in the call resulting in an (attempted) implicit instantiation in the following example:

```cpp
>>> cppyy.cppdef(""
... template<class T>
... T sumit_T(const std::vector<T>& data, T init) {
... return std::accumulate(data.begin(), data.end(), init);
... }"

(continues on next page)
```

12.1. `std::vector`
To be sure, the code is too strict in the simplistic example above, and with a future version of Cling it should be possible to lift some of these restrictions without causing incorrect results.

12.2 \texttt{std::map}

C++’s \texttt{map} is an associative container similar to Python’s \texttt{dict}, albeit one that has stronger type constraints. A \texttt{map} can be instantiated from a \texttt{dict} (and types can be inferred) or from a collection of \texttt{pair} mappings.

```python
>>> from cppyy.gbl.std import map

m = map[\text{str}, \text{int}](\text{"one"}, 1), (\text{"two"}, 2))  # type explicit, from pairs
>>> print(m)
\{ \text{"one"} => 1, \text{"two"} => 2 \}

m = map({1: \text{"one"}, 2: \text{"two"}})  # type implicit, from dict
>>> type(m)
<class cppyy.gbl.std.map<int,std::string> at 0x12d068d60>

>>> print(m)
\{ 1 => \text{"one"}, 2 => \text{"two"} \}
```

12.3 \texttt{std::string}

Python’s \texttt{str} is a unicode type since Python3, whereas \texttt{std::string} is single-byte char-based. Having the two correctly interact therefore deserves it’s own chapter.

12.4 \texttt{std::tuple}

C++ \texttt{tuple} is supported but it should be noted that its use, and in particular instantiating (heavily overloaded) \texttt{get<>} functions for member access is inefficient. They are really only meant for use when you have to pass a \texttt{tuple} to C++ code; and if returned from a C++ function, it is easier to simply unpack them. In all other cases, prefer Python’s builtin \texttt{tuple}. Example usage:

```python
>>> from cppyy.gbl.std import make_tuple, get

>>> t = make_tuple(1, '2', 5.)
>>> print(t)
<cppyy.gbl.std.tuple<int,std::string,double> object at 0x12033ee70>

>>> len(t)
3
```

(continues on next page)
```python
>>> get[0](t)  # access with templated std::get<>
1
>>> get[1](t)
b'2'
>>> get[2](t)
5.0
>>> a, b, c = t  # unpack through iteration
>>> print(a, b, c)
1 2 5.0
```

(continued from previous page)
All C++ exceptions are converted to Python exceptions and all Python exceptions are converted to C++ exceptions, to allow exception propagation through multiple levels of callbacks, while retaining the option to handle the outstanding exception as needed in either language. To preserve an exception across the language boundaries, it must derive from `std::exception`. If preserving the exception (or its type) is not possible, generic exceptions are used to propagate the exception: `Exception` in Python or `CPyCppyy::PyException` in C++.

In the most common case of an instance of a C++ exception class derived from `std::exception` that is thrown from a compiled library and which is copyable, the exception can be caught and handled like any other bound C++ object (or with `Exception` on the Python and `std::exception` on the C++ side). If the exception is not copyable, but derived from `std::exception`, the result of its `what()` reported with an instance of Python’s `Exception`. In all other cases, including exceptions thrown from interpreted code (due to limitations of the Clang JIT), the exception will turn into an instance of `Exception` with a generic message.

The standard C++ exceptions are explicitly not mapped onto standard Python exceptions, since other than a few simple cases, the mapping is too crude to be useful as the typical usage in each standard library is too different. Thus, for example, a thrown `std::runtime_error` instance will become a `cppyy.gbl.std.runtime_error` instance on the Python side (with Python’s `Exception` as its base class), not a `RuntimeError` instance.

The C++ code used for the examples below can be found [here](#), and it is assumed that that code is loaded at the start of any session. Download it, save it under the name `features.h`, and load it:

```python
>>> import cppyy
>>> cppyy.include('features.h')
```

In addition, the examples require the `throw` to be in compiled code. Save the following and build it into a shared library `libfeatures.so` (or `libfeatures.dll` on MS Windows):

```cpp
#include "features.h"

void throw_an_error(int i) {
    if (i)
        throw SomeError("this is an error");
    throw SomeOtherError("this is another error");
}
```
And load the resulting library:

```python
>>> cppyy.load_library('libfeatures')
```

Then try it out:

```python
>>> cppyy.gbl.throw_an_error(1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
cppyy.gbl.SomeError: void ::throw_an_error(int i) =>
  SomeError: this is an error
```

Note how the full type is preserved and how the result of `what()` is used for printing the exception. By preserving the full C++ type, it is possible to call any other member functions the exception may provide beyond `what` or access any additional data it carries.

To catch the exception, you can either use the full type, or any of its base classes, including `Exception` and `cppyy.gbl.std.exception`:

```python
>>> try:
...     cppyy.gbl.throw_an_error(0)
... except cppyy.gbl.SomeOtherError as e:  # catch by exact type
...     print("received:", e)
... received: <cppyy.gbl.SomeOtherError object at 0x7f9e11d3db10>
```

```python
>>> try:
...     cppyy.gbl.throw_an_error(0)
... except Exception as e:  # catch through base class
...     print("received:", e)
... received: <cppyy.gbl.SomeOtherError object at 0x7f9e11e00310>
```
CHAPTER 14

Python

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of any session. Download it, save it under the name features.h, and load it:

```python
>>> import cppyy
>>> cppyy.include('features.h')
```

14.1 PyObject

Arguments and return types of PyObject* can be used, and passed on to CPython API calls (or through cpyext in PyPy).

14.2 Doc strings

The documentation string of a method or function contains the C++ arguments and return types of all overloads of that name, as applicable. Example:

```python
>>> from cppyy.gbl import Concrete
>>> print Concrete.array_method.__doc__
void Concrete::array_method(int* ad, int size)
void Concrete::array_method(double* ad, int size)
```

14.3 Help

Bound C++ class is first-class Python and can thus be inspected like any Python objects can. For example, we can ask for help():
>>> help(Concrete)
Help on class Concrete in module gbl:

class Concrete(Abstract)
 | Method resolution order:
 | Concrete
 | Abstract
 | CPPInstance
 | __builtin__.object
 |
 | Methods defined here:
 |
 | __assign__(self, const Concrete&)
 | Concrete& Concrete::operator=(const Concrete&)
 |
 | __init__(self, *args)
 | Concrete::Concrete(int n = 42)
 | Concrete::Concrete(const Concrete&)
 |
| etc.
Warning: This is an experimental feature, available starting with release 2.4.0. It is still incomplete (see listing below) and has only been tested on Linux on x86_64.

Numba is a JIT compiler for Python functions that can be statically typed based on their input arguments. Since C++ objects are always statically typed and already implemented at the machine level, they can be dynamically integrated into the Numba type tracing and lowering by exposing type details through C++ reflection at runtime.

JIT-compiling traces of mixed Python/bound C++ code reduces (or even removes) the overhead of boxing/unboxing native data into their Python proxies and vice versa. It can also remove temporaries, especially for template expressions. Thus, there can be a significant speedup for mixed code, beyond the compilation of Python code itself. Note that the current implementation integrates compiled C++ into the intermediate representation (IR) as generated by Numba. A future version may integrate C++ (Cling-generated) IR with Numba IR, if the C++ code is exposed from (precompiled) header files, thus allowing inlining of C++ code into Numba traces, for further expected speedups.

15.1 Usage

cppyy exposes extension hooks that automatically make it available to Numba. If, however, you do not use setuptools (through pip or otherwise), you can load the extensions explicitly:

```python
>>> import cppyy.numba_ext
```

After that, Numba is able to trace cppyy bound code. Note that the numba_ext module will register only the proxy base classes, to keep overheads to a minimum. The pre-registered base classes will, lazily and automatically, register further type information for the concrete classes and overloads on actual use in Numba traces, not from other uses.
15.2 Examples

The following, non-exhaustive, set of examples gives an idea of the current level of support. The overall goal, however, is to be able to use cppyy bound code in Numba traces in the same as it can be used in normal Python code.

C++ free (global) functions can be called and overloads will be selected, or a template will be instantiated, based on the provided types, assuming all types match explicitly (thus e.g. typedefs, implicit conversions, and default arguments are not yet supported). Example:

```python
>>> import cppyy
>>> import numba
>>> import numpy as np

>>> cppyy.cppdef(""
...   template<typename T>
...   T square(T t) { return t*t; }
..."")
True

>>> @numba.jit(nopython=True)
... def tsa(a):
...   total = type(a[0])(0)
...   for i in range(len(a)):
...     total += cppyy.gbl.square(a[i])
...   return total
...

>>> a = np.array(range(10), dtype=np.float32)
>>> print(tsa(a))
285.0
>>> a = np.array(range(10), dtype=np.int64)
>>> print(tsa(a))
285

Instances of C++ classes can be passed into Numba traces. They can be returned from functions called _within_ the trace, but can not yet be returned _from_ the trace. Their public data is accessible (read-only) if of builtin type and their public methods can be called, for which overload selection works. Example:

```python
>>> import cppyy
>>> import numba
>>> import numpy as np

>>> cppyy.cppdef(""
... class MyData {
... public:
... MyData(int i, int j) : fField1(i), fField2(j) {}
... ...
... public:
... int get_field1() { return fField1; }
... int get_field2() { return fField2; }
... ...
... MyData copy() { return *this; }
... ...
... public:
... int fField1;
... int fField2;
... };
""")
True
```
(continues on next page)
>>> @numba.jit(nopython=True)
>>> def tsdf(a, d):
...     total = type(a[0])(0)
...     for i in range(len(a)):
...         total += a[i] + d.fField1 + d.fField2
...     return total
...
>>> d = cppyy.gbl.MyData(5, 6)
>>> a = np.array(range(10), dtype=np.int32)
>>> print(tsdf(a, d))
155
>>> # example of method calls
>>> @numba.jit(nopython=True)
>>> def tsdm(a, d):
...     total = type(a[0])(0)
...     for i in range(len(a)):
...         total += a[i] + d.get_field1() + d.get_field2()
...     return total
...
>>> print(tsdm(a, d))
155
>>> # example of object return by-value
>>> @numba.jit(nopython=True)
>>> def tsdcm(a, d):
...     total = type(a[0])(0)
...     for i in range(len(a)):
...         total += a[i] + d.copy().fField1 + d.get_field2()
...     return total
...
>>> print(tsdcm(a, d))
155
>>>

15.3 Performance

The main overhead of JITing Numba traces is in Numba itself; optimization of the IR and assembly by the backend plays a much smaller role. The use of bound C++ does not change that, since its introspection by and large relies on the same mechanisms as that of Python code. For example, it takes the same amount of wall clock time to JIT a trace using Numba’s included math functions (from module `math` or `numpy`) as one using C++ bound ones whether from the standard library or templated versions from e.g. Eigen. Use of very complex template expressions may change this balance, but in principle, wherever it makes sense in the first place to use Numba JITing, it is also fine, performance-wise, to use `cppyy` bound C++ inside the trace.

A second important overhead is in unboxing Python proxies of C++ objects, in particular when passed as an argument to a Numba-JITed function. The main costs are in the lookup (types are matched at every invocation) and to a lesser extent the subsequent copying of the instance data. Thus, functions that take a C++ object as an argument will require more time spent in the function body for JITing to be worth it than functions that do not.

The current implementation invokes C++ callables through function pointers and accesses data through offsets calculations from the object’s base address. A future implementation will be able to inline C++ into the Numba trace if code is available in headers files or was JITed.
CUDA support

Warning: This is an experimental feature, available starting with release 2.3.0. It is still incomplete and has only been tested on Linux on x86_64.

CUDA is supported by passing all JITed code through two pipelines: one for the CPU and one for the GPU. Use of the __CUDA__ pre-processor macro enables more fine-grained control over which pipeline sees what, which is used e.g. in the pre-compiled header: the GPU pipeline has the CUDA headers included, the CPU pipeline does not. Building the pre-compiled header will also pick up common CUDA libraries such as cuBLAS, if installed.

Each version of CUDA requires specific versions of Clang and the system compiler (e.g. gcc) for proper functioning. Since Cling as used by cppyy is still running Clang9 (work on the port to Clang13 is on-going) and since CUDA has changed the APIs for launching kernels in v11, the latest supported version of CUDA is v10.2. This is also the default for the binary distribution; use of a different version of CUDA (older than v10.2) will work but does require rebuilding cppyy-cling from source.

There are three environment variables to control Cling’s handling of CUDA:

- CLING_ENABLE_CUDA (required): set to 1 to enable the CUDA backend.
- CLING_CUDA_PATH (optional): set to the local CUDA installation if not in a standard location.
- CLING_CUDA_ARCH (optional): set the architecture to target; default is sm_35 and Clang9 is limited to sm_75.

After enabling CUDA with CLING_ENABLE_CUDA=1 CUDA code can be used and kernels can be launched from JITed code by in cppyy.cppdef(). There is currently no syntax or helpers yet to launch kernels from Python.
CHAPTER 17

Low-level code

C code and older C++ code sometimes makes use of low-level features such as pointers to built-in types, some of which do not have any Python equivalent (e.g. unsigned short*). Furthermore, such codes tend to be ambiguous: the information from header file is not sufficient to determine the full purpose. For example, an int* type may refer to the address of a single int (an out-parameter, say) or it may refer to an array of int, the ownership of which is not clear either. cppyy provides a few low-level helpers and integration with the Python ctypes module to cover these cases.

Use of these low-level helpers will obviously lead to very “C-like” code and it is recommended to pythonize the code, perhaps using the Cling JIT and embedded C++.

Note: the low-level module is not loaded by default (since its use is, or should be, uncommon). It needs to be imported explicitly:

```python
>>> import cppyy.ll
```

17.1 C/C++ casts

C++ instances are auto-casted to the most derived available type, so do not require explicit casts even when a function returns a pointer to a base class or interface. However, when given only a void* or intptr_t type on return, a cast is required to turn it into something usable.

• **bind_object**: This is the preferred method to proxy a C++ address, and lives in cppyy, not cppyy.ll, as it is not a low-level C++ cast, but a cppyy API that is also used internally. It thus plays well with object identity, references, etc. Example:

```python
>>> cppyy.cppdef(""
... struct MyStruct { int fInt; }
... void* create_mystruct() { return new MyStruct(42); }
...
...
... s = cppyy.gbl.create_mystruct()
```

(continues on next page)
Instead of the type name as a string, `bind_object` can also take the actual class (here: `cppyy.gbl.MyStruct`).

- **Typed nullptr**: A Python side proxy can pass through a pointer to pointer function argument, but if the C++ side allocates memory and stores it in the pointer, the result is a memory leak. In that case, use `bind_object` to bind `cppyy.nullptr` instead, to get a typed nullptr to pass to the function. Example (continuing from the example above):

```python
>>> cppyy.cppdef(''
... void create_mystruct(MyStruct** ptr) { *ptr = new MyStruct{42}; }
... '''
... ''
>>> s = cppyy.bind_object(cppyy.nullptr, 'MyStruct')
>>> print(s)
<cppyy.gbl.MyStruct object at 0x0>
>>> cppyy.gbl.create_mystruct(s)
>>> print(s)
<cppyy.gbl.MyStruct object at 0x7fc7d85b91c0>
>>> print(s.fInt)
42
```
17.2 NumPy casts

The `cppyy.LowLevelView` type returned for pointers to basic types, including for `void*`, is a simple and lightweight view on memory, given a pointer, type, and number of elements (or unchecked, if unknown). It only supports basic operations such as indexing and iterations, but also the buffer protocol for integration with full-fledged functional arrays such as NumPy's `ndarray`.

In addition, specifically when dealing with `void*` returns, you can use NumPy's low-level `frombuffer` interface to perform the cast. Example:

```python
>>> cppyy.cppdef(""
... void* create_float_array(int sz) {
... float* pf = (float*)malloc(sizeof(float)*sz);
... for (int i = 0; i < sz; ++i) pf[i] = 2*i;
... return pf;
... }
""
>>> import numpy as np
>>> NDATA = 8
>>> arr = cppyy.gbl.create_float_array(NDATA)
>>> print(arr)
<cppyy.LowLevelView object at 0x109f15230>
>>> arr.reshape((NDATA,)) # adjust the llv's size
>>> v = np.frombuffer(arr, dtype=np.float32, count=NDATA) # cast to float
>>> print(len(v))
8
>>> print(v)
array([0., 2., 4., 6., 8., 10., 12., 14.], dtype=float32)
```

Note that NumPy will internally check the total buffer size, so if the size you are casting to is larger than the size you are casting from, then the number of elements set in the `reshape` call needs to be adjusted accordingly.

17.3 Capsules

It is not possible to pass proxies from cppyy through function arguments of another binder (and vice versa, with the exception of `ctypes`, see below), because each will use a different internal representation, including for type checking and extracting the C++ object address. However, all Python binders are able to rebind (just like `bind_object` above for cppyy) the result of at least one of the following:

- **ll.addressof**: Takes a cppyy bound C++ object and returns its address as an integer value. Takes an optional `byref` parameter and if set to true, returns a pointer to the address instead.

- **ll.as_capsule**: Takes a cppyy bound C++ object and returns its address as a PyCapsule object. Takes an optional `byref` parameter and if set to true, returns a pointer to the address instead.

- **ll.as_cobject**: Takes a cppyy bound C++ object and returns its address as a PyCObject object for Python2 and a PyCapsule object for Python3. Takes an optional `byref` parameter and if set to true, returns a pointer to the address instead.

- **ll.as_ctypes**: Takes a cppyy bound C++ object and returns its address as a `ctypes.c_void_p` object. Takes an optional `byref` parameter and if set to true, returns a pointer to the address instead.
17.4 ctypes

The ctypes module has been part of Python since version 2.5 and provides a Python-side foreign function interface. It is clunky to use and has very bad performance, but it is guaranteed to be available. It does not have a public C interface, only the Python one, but its internals have been stable since its introduction, making it safe to use for tight and efficient integration at the C level (with a few Python helpers to assure lazy lookup).

Objects from ctypes can be passed through arguments of functions that take a pointer to a single C++ builtin, and ctypes pointers can be passed when a pointer-to-pointer is expected, e.g. for array out-parameters. This leads to the following set of possible mappings:

<table>
<thead>
<tr>
<th>C++</th>
<th>ctypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>by value (ex.: int)</td>
<td>.value (ex.: c_int(0).value)</td>
</tr>
<tr>
<td>by const reference (ex.: const int&amp;)</td>
<td>.value (ex.: c_int(0).value)</td>
</tr>
<tr>
<td>by reference (ex.: int&amp;)</td>
<td>direct (ex.: c_int(0))</td>
</tr>
<tr>
<td>by pointer (ex.: int*)</td>
<td>direct (ex.: c_int(0))</td>
</tr>
<tr>
<td>by ptr-ref (ex.: int&amp;)</td>
<td>pointer (ex.: pointer(c_int(0)))</td>
</tr>
<tr>
<td>by ptr-ptr in (ex.: int**)</td>
<td>pointer (ex.: pointer(c_int(0)))</td>
</tr>
<tr>
<td>by ptr-ptr out (ex.: int**)</td>
<td>POINTER (ex.: POINTER(c_int)())</td>
</tr>
</tbody>
</table>

The ctypes pointer objects (from POINTER, pointer, or byref) can also be used for pass by reference or pointer, instead of the direct object, and ctypes.c_void_p can pass through all pointer types. The addresses will be adjusted internally by cppyy.

Note that ctypes.c_char_p is expected to be a NULL-terminated C string, not a character array (see the ctypes module documentation), and that ctypes.c_bool is a C_Bool type, not C++ bool.

17.5 Memory

C++ has three ways of allocating heap memory (malloc, new, and new[]) and three corresponding ways of deallocation (free, delete, and delete[]). Direct use of malloc and new should be avoided for C++ classes, as these may override operator new to control their allocation own. However these low-level allocators can be necessary for builtin types on occassion if the C++ side takes ownership (otherwise, prefer either array from the builtin module array or ndarray from Numpy).

The low-level module adds the following functions:

- **ll.malloc**: an interface on top of C’s malloc. Use it as a template with the number of elements (not the number types) to be allocated. The result is a cppyy.LowLevelView with the proper type and size:

  ```python
 >>> arr = cppyy.ll.malloc[int](4) # allocates memory for 4 C ints
 >>> print(len(arr))
 4
 >>> print(type(arr[0]))
 <type 'int'>
 >>>
  ```

  The actual C malloc can also be used directly, through cppyy.gbl.malloc, taking the number of bytes to be allocated and returning a void*.

- **ll.free**: an interface to C’s free, to deallocate memory allocated by C’s malloc. To continue to example above:

  ```python
 >>> cppyy.ll.free(arr)
 >>>
  ```
The actual C free can also be used directly, through `cppyy.gbl.free`.

- **ll.array_new**: an interface on top of C++'s `new[]`. Use it as a template; the result is a `cppyy.LowLevelView` with the proper type and size:

```python
>>> arr = cppyy.ll.array_new[int](4) # allocates memory for 4 C ints
>>> print(len(arr)) 4
>>> print(type(arr[0])) <type 'int'>
>>>
```

- **ll.array_delete**: an interface on top of C++'s `delete[]`. To continue to example above:

```python
>>> cppyy.ll.array_delete(arr)
>>>
```
18.1 File features.h

```cpp
#include <cmath>
#include <iostream>
#include <vector>

//-----
unsigned int gUint = 0;
//-----
class Abstract {
public:
 virtual ~Abstract() {};
 virtual void abstract_method() = 0;
 virtual void concrete_method() = 0;
};

void Abstract::concrete_method() {
 std::cout << "called Abstract::concrete_method" << std::endl;
}

//-----
class Concrete : Abstract {
public:
 Concrete(int n=42) : m_int(n), m_const_int(17) {};
 ~Concrete() {};
 virtual void abstract_method() {
 std::cout << "called Concrete::abstract_method" << std::endl;
 }
 virtual void concrete_method() {
```
std::cout << "called Concrete::concrete_method" << std::endl;
}

void array_method(int* ad, int size) {
    for (int i=0; i < size; ++i)
        std::cout << ad[i] << ' ';
    std::cout << '\n';
}

void array_method(double* ad, int size) {
    for (int i=0; i < size; ++i)
        std::cout << ad[i] << ' ';
    std::cout << '\n';
}

void uint_ref_assign(unsigned int& target, unsigned int value) {
    target = value;
}

Abstract* show_autocast() {
    return this;
}

operator const char*() {
    return "Hello operator const char*!";
}

public:
    double m_data[4];
    int m_int;
    const int m_const_int;
    static int s_int;
};

typedef Concrete Concrete_t;

int Concrete::s_int = 321;

void call_abstract_method(Abstract* a) {
    a->abstract_method();
}

//-----
class Abstract1 {
public:
    virtual ~Abstract1() {}
    virtual std::string abstract_method1() = 0;
};

class Abstract2 {
public:
    virtual ~Abstract2() {}
    virtual std::string abstract_method2() = 0;
};

std::string call_abstract_method1(Abstract1* a) {
std::string call_abstract_method2(Abstract2* a) {
    return a->abstract_method2();
}

//-----

int global_function(int) {
    return 42;
}

double global_function(double) {
    return std::exp(1);
}

int call_int_int(int (*f)(int, int), int i1, int i2) {
    return f(i1, i2);
}

template<class A, class B, class C = A>
C multiply(A a, B b) {
    return C{a*b};
}

//-----

namespace Namespace {

    class Concrete {
        public:
            class NestedClass {
                public:
                    std::vector<int> m_v;
                };

                int global_function(int i) {
                    return 2*::global_function(i);
                }

                double global_function(double d) {
                    return 2*::global_function(d);
                }

            } // namespace Namespace

        } // namespace Namespace

    } // namespace Namespace

    enum EFruit {kApple=78, kBanana=29, kCitrus=34};
    enum class NamedClassEnum { E1 = 42 };

    void throw_an_error(int i);

    class SomeError : public std::exception {
        public:
            explicit SomeError(const std::string& msg) : fMsg(msg) {}
const char* what() const throw() override { return fMsg.c_str(); }

private:
  std::string fMsg;
};

class SomeOtherError : public SomeError {
public:
  explicit SomeOtherError(const std::string& msg) : SomeError(msg) {}  
  SomeOtherError(const SomeOtherError& s) : SomeError(s) {}
};

This is a collection of a few more features listed that do not have a proper place yet in the rest of the documentation.

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of any session. Download it, save it under the name features.h, and load it:

```python
>>> import cppyy
>>> cppyy.include('features.h')
```

## 18.2 Special variables

There are several conventional “special variables” that control behavior of functions or provide (internal) information. Often, these can be set/used in pythonizations to handle memory management or Global Interpreter Lock (GIL) release.

- `__python_owns__`: a flag that every bound instance carries and determines whether Python or C++ owns the C++ instance (and associated memory). If Python owns the instance, it will be destructed when the last Python reference to the proxy disappears. You can check/change the ownership with the `__python_owns__` flag that every bound instance carries. Example:

```python
>>> from cppyy.gbl import Concrete
>>> c = Concrete()
>>> c.__python_owns__ # True: object created in Python
True
```

- `__creates__`: a flag that every C++ overload carries and determines whether the return value is owned by C++ or Python: if True, Python owns the return value, otherwise C++.

- `__set_lifeline__`: a flag that every C++ overload carries and determines whether the return value should place a back-reference on `self`, to prevent the latter from going out of scope before the return value does. The default is `False`, but will be automatically set at run-time if a return value’s address is a C++ object pointing into the memory of `this`, or if `self` is a by-value return.

- `__release_gil__`: a flag that every C++ overload carries and determines whether the Global Interpreter Lock (GIL) should be released during the C++ call to allow multi-threading. The default is `False`.

- `__useffi__`: a flag that every C++ overload carries and determines whether generated wrappers or direct foreign functions should be used. This is for PyPy only; the flag has no effect on CPython.

- `__sig2exc__`: a flag that every C++ overload carries and determines whether C++ signals (such as SIGABRT) should be converted into Python exceptions.

- `__cpp_name__`: a string that every C++ bound class carries and contains the actual C++ name (as opposed to `__name__` which has the Python name). This can be useful for template instantiations, documentation, etc.
18.3 STL algorithms

It is usually easier to use a Python equivalent or code up the effect of an STL algorithm directly, but when operating on a large container, calling an STL algorithm may offer better performance. It is important to note that all STL algorithms are templates and need the correct types to be properly instantiated. STL containers offer typedefs to obtain those exact types and these should be used rather than relying on the usual implicit conversions of Python types to C++ ones. For example, as there is no char type in Python, the std::remove call below can not be instantiated using a Python string, but the std::string::value_type must be used instead:

```python
>>> cppstr = cppyy.gbl.std.string
>>> n = cppstr('this is a C++ string')
>>> print(n)
this is a C++ string
>>> n.erase(cppyy.gbl.std.remove(n.begin(), n.end(), cppstr.value_type(' ')))
<cppyy.gbl.__wrap_iter<char*> object at 0x7fba35d1af50>
>>> print(n)
thisisaC++stringing
```

18.4 Reduced typing

Note: from cppyy.interactive import * is no longer supported for CPython 3.11 and later because the dict object features it relies on have been removed.

Typing cppyy.gbl all the time gets old rather quickly, but the dynamic nature of cppyy makes something like from cppyy.gbl import * impossible. For example, classes can be defined dynamically after that statement and then they would be missed by the import. In scripts, it is easy enough to rebind names to achieve a good amount of reduction in typing (and a modest performance improvement to boot, because of fewer dictionary lookups), e.g.:

```python
import cppyy
std = cppyy.gbl.std
v = std.vector[int](range(10))
```

But even such rebinding becomes annoying for (brief) interactive sessions.

For CPython only (and not with tools such as IPython or in IDEs that replace the interactive prompt), there is a fix, using from cppyy.interactive import *. This makes lookups in the global dictionary of the current frame also consider everything under cppyy.gbl. This feature comes with a performance penalty and is not meant for production code. Example usage:

```python
>>> from cppyy.interactive import *
>>> v = std.vector[int](range(10))
>>> print(list(v))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

For PyPy, IPython, etc. cppyy.gbl is simply rebound as g and cppyy.gbl.std is made available as std. Not as convenient as full lookup, and missing any other namespaces that may be available, but still saves some typing in may cases.
18.5 Odds and ends

- **namespaces**: Are represented as python classes. Namespaces are more open-ended than classes, so sometimes initial access may result in updates as data and functions are looked up and constructed lazily. Thus the result of `dir()` on a namespace shows the classes and functions available for binding, even if these may not have been created yet. Once created, namespaces are registered as modules, to allow importing from them. The global namespace is `cppyy.gbl`.

- **NULL**: Is represented as `cppyy.nullptr`. Starting C++11, the keyword `nullptr` is used to represent NULL. For clarity of intent, it is recommended to use this instead of `None` (or the integer 0, which can serve in some cases), as `None` is better understood as `void` in C++.
By default, the clang JIT as used by cppyy does not generate debugging information. This is first of all because it has proven to be not reliable in all cases, but also because in a production setting this information, being internal to the wrapper generation, goes unused. However, that does mean that a debugger that starts from python will not be able to step through JITed code into the C++ function that needs debugging, even when such information is available for that C++ function.

To enable debugging information in JITed code, set the EXTRA_CLING_ARGS envvar to `-g` (and any further compiler options you need, e.g. add `-O2` to debug optimized code).

On a crash in C++, the backend will attempt to provide a stack trace. This works quite well on Linux (through gdb) and decently on MacOS (through unwind), but is currently unreliable on MS Windows. To prevent printing of this trace, which can be slow to produce, set the envvar CPPYY_CRASH_QUIET to ‘1’.

It is even more useful to obtain a traceback through the Python code that led up to the problem in C++. Many modern debuggers allow mixed-mode C++/Python debugging (for example gdb and MSVC), but cppyy can also turn abortive C++ signals (such as a segmentation violation) into Python exceptions, yielding a normal traceback. This is particularly useful when working with cross-inheritance and other cross-language callbacks.

To enable the signals to exceptions conversion, import the lowlevel module cppyy.ll and use:

```python
import cppyy.ll
cppyy.ll.set_signals_as_exception(True)
```

Call `set_signals_as_exception(False)` to disable the conversion again. It is recommended to only have the conversion enabled around the problematic code, as it comes with a performance penalty. If the problem can be localized to a specific function, you can use its `__sig2exc__` flag to only have the conversion active in that function. Finally, for convenient scoping, you can also use:

```python
with cppyy.ll.signals_as_exception():
 # crashing code goes here
```

The translation of signals to exceptions is as follows (all of the exceptions are subclasses of `cppyy.ll.FatalError`):
As an example, consider the following cross-inheritance code that crashes with a segmentation violation in C++, because a nullptr is dereferenced:

```python
import cppyy
import cppyy.ll

cppyy.cppdef(""
 class Base {
 public:
 virtual ~Base() {}
 virtual int runit() = 0;

 int callback(Base* b) {
 return b->runit();
 }

 void segfault(int* i) { *i = 42; }
"")

class Derived(cppyy.gbl.Base):
 def runit(self):
 print("Hi, from Python!")
 cppyy.gbl.segfault(cppyy.nullptr)

if now used with signals_as_exception, e.g. like so:

d = Derived()
with cppyy.ll.signals_as_exception():
 cppyy.gbl.callback(d)

it produces the following, very informative, Python-side trace:

```
Traceback (most recent call last):
  File "crashit.py", line 25, in <module>
    cppyy.gbl.callback(d)
  File "cppyylib.cpp", line 1, in callback
    cpptypes.SegmentationViolation: int ::callback(Base* b) =>
    cpptypes.SegmentationViolation: void ::segfault(int* i) =>
    cpptypes.SegmentationViolation: segfault in C++; program state was reset
```

whereas without, there would be no Python-side information at all.

<table>
<thead>
<tr>
<th>C++ signal</th>
<th>Python exception</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGSEGV</td>
<td>cppyy.ll.SegmentationViolation</td>
</tr>
<tr>
<td>SIGBUS</td>
<td>cppyy.ll.BusError</td>
</tr>
<tr>
<td>SIGABRT</td>
<td>cppyy.ll.AbortSignal</td>
</tr>
<tr>
<td>SIGILL</td>
<td>cppyy.ll.IllegalInstruction</td>
</tr>
</tbody>
</table>
Automatic bindings generation mostly gets the job done, but unless a C++ library was designed with expressiveness and interactivity in mind, using it will feel stilted. Thus, if you are not the end-user of a set of bindings, it is beneficial to implement pythonizations. Some of these are already provided by default, e.g. for STL containers. Consider the following code, iterating over an STL map, using naked bindings (i.e. “the C++ way”):

```python
>>> from cppyy.gbl import std
>>> m = std.map[int, int]()
>>> for i in range(10):
...     m[i] = i*2
...     b = m.begin()
>>> while b != m.end():
...     print(b.__deref__().second, end=' ')  
...     b.__preinc__()

0 2 4 6 8 10 12 14 16 18
```

Yes, that is perfectly functional, but it is also very clunky. Contrast this to the (automatic) pythonization:

```python
>>> for key, value in m:
...     print(value, end=' ')  

0 2 4 6 8 10 12 14 16 18
```

Such a pythonization can be written completely in Python using the bound C++ methods, with no intermediate language necessary. Since it is written on abstract features, there is also only one such pythonization that works for all STL map instantiations.
20.1 Python callbacks

Since bound C++ entities are fully functional Python ones, pythonization can be done explicitly in an end-user facing Python module. However, that would prevent lazy installation of pythonizations, so instead a callback mechanism is provided.

A callback is a function or callable object taking two arguments: the Python proxy class to be pythonized and its C++ name. The latter is provided to allow easy filtering. This callback is then installed through `cppyy.py.add_pythonization` and ideally only for the relevant namespace (installing callbacks for classes in the global namespace is supported, but beware of name clashes).

Pythonization is most effective of well-structured C++ libraries that have idiomatic behaviors. It is then straightforward to use Python reflection to write rules. For example, consider this callback that looks for the conventional C++ function `GetLength` and replaces it with Python’s `__len__`

```python
import cppyy

def replace_getlength(klass, name):
    try:
        klass.__len__ = klass.__dict__['GetLength']
    except KeyError:
        pass

cppyy.py.add_pythonization(replace_getlength, 'MyNamespace')

cppyy.cppdef(""
namespace MyNamespace {
    class MyClass {
        public:
            MyClass(int i) : fInt(i) {}
            int GetLength() { return fInt; }

        private:
            int fInt;
    }
}"

m = cppyy.gbl.MyNamespace.MyClass(42)
assert len(m) == 42
```

20.2 C++ callbacks

If you are familiar with the Python C-API, it may sometimes be beneficial to add unique optimizations to your C++ classes to be picked up by the pythonization layer. There are two conventional function that `cppyy` will look for (no registration of callbacks needed):

```cpp
static void __cppyy_explicit_pythonize__(PyObject* klass, const std::string&);
```

which is called only for the class that declares it. And:

```cpp
static void __cppyy_pythonize__(PyObject* klass, const std::string&);
```

which is also called for all derived classes.

Just as with the Python callbacks, the first argument will be the Python class proxy, the second the C++ name, for easy
filtering. When called, cppyy will be completely finished with the class proxy, so any and all changes, including such low-level ones such as the replacement of iteration or buffer protocols, are fair game.
The `cppyy-backend` package brings in the following utilities to help with repackaging and redistribution:

- **cling-config**: for compile time flags
- **rootcling** and **genreflex**: for dictionary generation
- **cppyy-generator**: part of the **CMake interface**

21.1 Compiler/linker flags

`cling-config` is a small utility to provide access to the as-installed configuration, such as compiler/linker flags and installation directories, of other components. Usage examples:

```bash
$ cling-config --help
Usage: cling-config [--cflags] [--cppflags] [--cmake]
$ cling-config --cmake
/usr/local/lib/python2.7/dist-packages/cppyy_backend/cmake
```

21.2 Dictionaries

Loading header files or code directly into **cling** is fine for interactive work and smaller packages, but large scale applications benefit from pre-compiling code, using the automatic class loader, and packaging dependencies in so-called “dictionaries.”

A **dictionary** is a generated C++ source file containing references to the header locations used when building (and any additional locations provided), a set of forward declarations to reduce the need of loading header files, and a few I/O helper functions. The name “dictionary” is historic: before **cling** was used, it contained the complete generated C++ reflection information, whereas now that is derived at run-time from the header files. It is still possible to fully embed header files rather than only storing their names and search locations, to make the dictionary more self-contained.
After generating the dictionary, it should be compiled into a shared library. This provides additional dependency control: by linking it directly with any further libraries needed, you can use standard mechanisms such as rpath to locate those library dependencies. Alternatively, you can add the additional libraries to load to the mapping files of the class loader (see below).

Note: The JIT needs to resolve linker symbols in order to call them through generated wrappers. Thus, any classes, functions, and data that will be used in Python need to be exported. This is the default behavior on Mac and Linux, but not on Windows. On that platform, use _declspec(dllexport) to explicitly export the classes and functions you expect to call. CMake has simple support for exporting all C++ symbols.

In tandem with any dictionary, a pre-compiled module (.pcm) file will be generated. C++ modules are still on track for inclusion in the C++20 standard and most modern C++ compilers, clang among them, already have implementations. The benefits for cppyy include faster bindings generation, lower memory footprint, and isolation from preprocessor macros and compiler flags. The use of modules is transparent, other than the requirement that they need to be co-located with the compiled dictionary shared library.

Optionally, the dictionary generation process also produces a mapping file, which lists the libraries needed to load C++ classes on request (for details, see the section on the class loader below).

Structurally, you could have a single dictionary for a project as a whole, but more likely a large project will have a pre-existing functional decomposition that can be followed, with a dictionary per functional unit.

21.2.1 Generation

There are two interfaces onto the same underlying dictionary generator: rootcling and genreflex. The reason for having two is historic and they are not complete duplicates, so one or the other may suit your preference better. It is foreseen that both will be replaced once C++ modules become more mainstream, as that will allow simplification and improved robustness.

rootcling

The first interface is called rootcling:

```bash
$ rootcling
Usage: rootcling [-v][-v0-4] [-f] [out.cxx] [opts] file1.h[+][-][!] file2.h[+][-][!] .

For more extensive help type: /usr/local/lib/python2.7/dist-packages/cppyy_backend/bin/rootcling -h
```

Rather than providing command line options, the main steering of rootcling behavior is done through #pragmas in a Linkdef.h file, with most pragmas dedicated to selecting/excluding (parts of) classes and functions. Additionally, the Linkdef.h file may contain preprocessor macros.

The output consists of a dictionary file (to be compiled into a shared library), a C++ module, and an optional mapping file, as described above.

genreflex

The second interface is called genreflex:
genreflex has a richer command line interface than rootcling as can be seen from the full help message. Selection/exclusion is driven through a selection file using an XML format that allows both exact and pattern matching to namespace, class, enum, function, and variable names.

Example

Consider the following basic example code, living in a header “MyClass.h”:

```cpp
class MyClass {
public:
    MyClass(int i) : fInt(i) {} 
    int get_int() { return fInt; }
private:
    int fInt;
};
```

and a corresponding “Linkdef.h” file, selecting only MyClass:

```cpp
#ifdef __ROOTCLING__
#pragma link off all classes;
#pragma link off all functions;
#pragma link off all globals;
#pragma link off all typedef;

#pragma link C++ class MyClass;
#endif
```

For more pragmas, see the rootcling manual. E.g., a commonly useful pragma is one that selects all C++ entities that are declared in a specific header file:

```cpp
#pragma link C++ defined_in "MyClass.h"
```

Next, use rootcling to generate the dictionary (here: MyClass_rflx.cxx) and module files:

```
$ rootcling -f MyClass_rflx.cxx MyClass.h Linkdef.h
```

Alternatively, define a “myclass_selection.xml” file:

```xml
<lcgdict>
    <class name="MyClass" />
</lcgdict>
```

serving the same purpose as the Linkdef.h file above (in fact, rootcling accepts a “selection.xml” file in lieu of a “Linkdef.h”). For more tags, see the selection file documentation. Commonly used are namespace, function, enum, or variable instead of the class tag, and pattern instead of name with wildcarding in the value string.

Next, use genreflex to generate the dictionary (here: MyClass_rflx.cxx) and module files:
$ genreflex MyClass.h --selection=myclass_selection.xml -o MyClass_rflx.cxx

From here, compile and link the generated dictionary file with the project and/or system specific options and libraries into a shared library, using `cling-config` for the relevant cppyy compiler/linker flags. (For work on MS Windows, this helper script may be useful.) To continue the example, assuming Linux:

$ g++ `cling-config --cppflags` -fPIC -O2 -shared MyClass_rflx.cxx -o MyClassDict.so

Instead of loading the header text into `cling`, you can now load the dictionary:

```python
>>> import cppyy
>>> cppyy.load_reflection_info('MyClassDict')
>>> cppyy.gbl.MyClass(42)
<cppyy.gbl.MyClass object at 0x7ffb9f230950>
>>> print(_.get_int())
42
```

and use the selected C++ entities as if the header was loaded.

The dictionary shared library can be relocated, as long as it can be found by the dynamic loader (e.g. through `LD_LIBRARY_PATH`) and the header file is fully embedded or still accessible (e.g. through a path added to `cppyy.add_include_path` at run-time, or with `-I` to `rootcling/genreflex` during build time). When relocating the shared library, move the `.pcm` with it. Once support for C++ modules is fully fleshed out, access to the header file will no longer be needed.

21.2.2 Class loader

Explicitly loading dictionaries is fine if this is hidden under the hood of a Python package and thus transparently done on `import`. Otherwise, the automatic class loader is more convenient, as it allows direct use without having to manually find and load dictionaries (assuming these are locatable by the dynamic loader).

The class loader utilizes so-called rootmap files, which by convention should live alongside the dictionary shared library (and C++ module file). These are simple text files, which map C++ entities (such as classes) to the dictionaries and other libraries that need to be loaded for their use.

With `genreflex`, the mapping file can be automatically created with `--rootmap-lib=MyClassDict`, where “MyClassDict” is the name of the shared library (without the extension) build from the dictionary file. With `rootcling`, create the same mapping file with `-rmf MyClassDict.rootmap -rml MyClassDict`. It is necessary to provide the final library name explicitly, since it is only in the separate linking step where these names are fixed and those names may not match the default choice.

With the mapping file in place, the above example can be rerun without explicit loading of the dictionary:

```python
>>> import cppyy
>>> from cppyy.gbl import MyClass
>>> MyClass(42).get_int()
42
```

21.3 Bindings collection

`cppyy-generator` is a clang-based utility program which takes a set of C++ header files and generates a JSON output file describing the objects found in them. This output is intended to support more convenient access to a set of
cppyy-supported bindings:

```cpp
$ cppyy-generator --help
                     output sources [sources ...]
```

This utility is mainly used as part of the *CMake interface*.
CMake interface

CMake fragments are provided for an Automated generation of an end-user bindings package from a CMake-based project build. The bindings generated by rootcling, are ‘raw’ in the sense that:

- The .cpp file be compiled. The required compilation steps are platform-dependent.
- The bindings are not packaged for distribution. Typically, users expect to have a pip-compatible package.
- The binding are in the ‘cppyy.gbl’ namespace. This is an inconvenience at best for users who might expect C++ code from KF5::Config to appear in Python via “import KF5.Config”.
- The bindings are loaded lazily, which limits the discoverability of the content of the bindings.
- cppyy supports customization of the bindings via ‘Pythonization’ but there is no automated way to load them.

These issues are addressed by the CMake support. This is a blend of Python packaging and CMake where CMake provides:

- Platform-independent scripting of the creation of a Python ‘wheel’ package for the bindings.
- An facility for CMake-based projects to automate the entire bindings generation process, including basic automated tests.

Note: The JIT needs to resolve linker symbols in order to call them through generated wrappers. Thus, any classes, functions, and data that will be used in Python need to be exported. This is the default behavior on Mac and Linux, but not on Windows. On that platform, use __declspec(dllexport) to explicitly export the classes and function you expect to call. CMake has simple support for exporting all C++ symbols.

22.1 Python packaging

Modern Python packaging usage is based on the ‘wheel’. This is places the onus on the creation of binary artifacts in the package on the distributor. In this case, this includes the platform-dependent steps necessary to compile the .cpp file.

The generated package also takes advantage of the __init__.py load-time mechanism to enhance the bindings:
• The bindings are rehosted in a “native” namespace so that C++ code from KF5::Config appears in Python via “import KF5.Config”.
• (TBD) Load Pythonizations.

Both of these need/can use the output of the cppyy-generator (included in the package) as well as other runtime support included in cppyy.

22.2 CMake usage

The CMake usage is via two modules:

• FindLibClang.cmake provides some bootstrap support needed to locate clang. This is provided mostly as a temporary measure; hopefully upstream support will allow this to be eliminated in due course.
• FindCppyy.cmake provides the interface described further here.

Details of the usage of these modules is within the modules themselves, but here is a summary of the usage.

FindLibClang.cmake sets the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LibClang_FOUND</td>
<td>True if libclang is found.</td>
</tr>
<tr>
<td>LibClang_LIBRARY</td>
<td>Clang library to link against.</td>
</tr>
<tr>
<td>LibClang_VERSION</td>
<td>Version number as a string (e.g. "3.9").</td>
</tr>
<tr>
<td>LibClang_PYTHON_EXECUTABLE</td>
<td>Compatible python version.</td>
</tr>
</tbody>
</table>

FindCppyy.cmake sets the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cppyy_FOUND</td>
<td>set to true if Cppyy is found</td>
</tr>
<tr>
<td>Cppyy_DIR</td>
<td>the directory where Cppyy is installed</td>
</tr>
<tr>
<td>Cppyy_EXECUTABLE</td>
<td>the path to the Cppyy executable</td>
</tr>
<tr>
<td>Cppyy_INCLUDE_DIRS</td>
<td>Where to find the Cppyy header files.</td>
</tr>
<tr>
<td>Cppyy_VERSION</td>
<td>the version number of the Cppyy backend.</td>
</tr>
</tbody>
</table>

and also defines the following functions:

- cppyy_add_bindings - Generate a set of bindings from a set of header files.
- cppyy_find_pips - Return a list of available pip programs.

22.2.1 cppyy_add_bindings

Generate a set of bindings from a set of header files. Somewhat like CMake’s add_library(), the output is a compiler target. In addition ancillary files are also generated to allow a complete set of bindings to be compiled, packaged and installed:

```cpp
cppyy_add_bindings(
    pkg
    pkg_version
    author
    author_email
    [URL url]
    [LICENSE license]
    [LANGUAGE_STANDARD std]
    [LINKDEFS linkdef...]
    [IMPORTS pcm...]
    [GENERATE_OPTIONS option...]
)```

(continues on next page)
The bindings are based on https://cppyy.readthedocs.io/en/latest/, and can be used as per the documentation provided via the cppyy.gbl namespace. First add the directory of the <pkg>.rootmap file to the LD_LIBRARY_PATH environment variable, then “import cppyy; from cppyy.gbl import <some-C++-entity>”.

Alternatively, use “import <pkg>”. This convenience wrapper supports “discovery” of the available C++ entities using, for example Python 3’s command line completion support.

The bindings are complete with a setup.py, supporting Wheel-based packaging, and a test.py supporting pytest/nosetest sanity test of the bindings.

The bindings are generated/built/packaged using 3 environments:

- One compatible with the header files being bound. This is used to generate the generic C++ binding code (and some ancillary files) using a modified C++ compiler. The needed options must be compatible with the normal build environment of the header files.
- One to compile the generated, generic C++ binding code using a standard C++ compiler. The resulting library code is “universal” in that it is compatible with both Python2 and Python3.
- One to package the library and ancillary files into standard Python2/3 wheel format. The packaging is done using native Python tooling.
### Arguments and options

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkg</td>
<td>The name of the package to generate. This can be either of the form “simplename” (e.g. “Akonadi”), or of the form “namespace.simplename” (e.g. “KF5.Akonadi”).</td>
</tr>
<tr>
<td>pkg_version</td>
<td>The version of the package.</td>
</tr>
<tr>
<td>author</td>
<td>The name of the library author.</td>
</tr>
<tr>
<td>author_email</td>
<td>The email address of the library author.</td>
</tr>
<tr>
<td>URL url</td>
<td>The home page for the library. Default is “<a href="https://pypi.python.org/pypi/">https://pypi.python.org/pypi/</a>&lt;pkg&gt;”.</td>
</tr>
<tr>
<td>LICENSE</td>
<td>The license, default is “LGPL 2.0”.</td>
</tr>
<tr>
<td>LANGUAGE_STANDARD std</td>
<td>The version of C++ in use, “14” by default.</td>
</tr>
<tr>
<td>IMPORTS</td>
<td>Files which contain previously-generated bindings which pkg depends on.</td>
</tr>
<tr>
<td>GENERATE_OPTIONS</td>
<td>Options which are to be passed into the rootcling command. For example, bindings which depend on Qt may need “-D__PIC__; -Wno-macro-redefined”.</td>
</tr>
<tr>
<td>LINKDEFS</td>
<td>Files or lines which contain extra #pragma content for the linkdef.h file used by rootcling. See <a href="https://root.cern.ch/root/html/guides/users-guide/AddingaClass.html#the-linkdef.h-file">https://root.cern.ch/root/html/guides/users-guide/AddingaClass.html#the-linkdef.h-file</a>. In lines, literal semi-colons must be escaped: “;:”.</td>
</tr>
<tr>
<td>EXTRA_CODES</td>
<td>Files which contain extra code needed by the bindings. Customization is by routines named “c13n_&lt;something&gt;”; each such routine is passed the module for &lt;pkg&gt;:</td>
</tr>
<tr>
<td></td>
<td>:: code-block python</td>
</tr>
<tr>
<td></td>
<td>def c13n_doit(pkg_module):</td>
</tr>
<tr>
<td></td>
<td>print(pkg_module.<strong>dict</strong>)</td>
</tr>
<tr>
<td></td>
<td>The files and individual routines within files are processed in alphabetical order.</td>
</tr>
<tr>
<td>EXTRA_HEADERS</td>
<td>Files which contain extra headers needed by the bindings.</td>
</tr>
<tr>
<td>EXTRA_PYTHONS</td>
<td>Files which contain extra Python code needed by the bindings.</td>
</tr>
<tr>
<td>COMPILE_OPTIONS</td>
<td>Options which are to be passed into the compile/link command.</td>
</tr>
<tr>
<td>INCLUDE_DIRS</td>
<td>Include directories.</td>
</tr>
<tr>
<td>LINK_LIBRARIES</td>
<td>Libraries to link against.</td>
</tr>
<tr>
<td>H_DIRS</td>
<td>Base directories for _H_FILES.</td>
</tr>
<tr>
<td>H_FILES</td>
<td>Header files for which to generate bindings in pkg. Absolute filenames, or filenames relative to _H_DIRS. All definitions found directly in these files will contribute to the bindings. (NOTE: This means that if “forwarding headers” are present, the real “legacy” headers must be specified as _H_FILES). All header files which contribute to a given C++ namespace should be grouped into a single pkg to ensure a 1-to-1 mapping with the implementing Python class.</td>
</tr>
</tbody>
</table>

Returns via PARENT\_SCOPE variables:
target The CMake target used to build.
setup_py The setup.py script used to build or install pkg.

Examples:

```cpp
find_package(Qt5Core NO_MODULE)
find_package(KF5KDCraw NO_MODULE)
get_target_property(_H_DIRS KF5::KDCraw INTERFACE_INCLUDE_DIRECTORIES)
get_target_property(_LINK_LIBRARIES KF5::KDCraw INTERFACE_LINK_LIBRARIES)
set(_LINK_LIBRARIES KF5::KDCraw ${_LINK_LIBRARIES})
include(${KF5KDCraw_DIR}/KF5KDCrawConfigVersion.cmake)

cppyy_add_bindings(
 "KDCRAW" "${PACKAGE_VERSION}" "Shaheed" "srhaque@theiet.org"
 LANGUAGE_STANDARD "14"
 LINKDEFS "../linkdef_overrides.h"
 GENERATE_OPTIONS "-D__PIC__;-Wno-macro-redefined"
 INCLUDE_DIRS ${Qt5Core_INCLUDE_DIRS}
 LINK_LIBRARIES ${_LINK_LIBRARIES}
 H_DIRS ${_H_DIRS}
 H_FILES "dcrawinfocontainer.h;kdcraw.h;rawdecodingsettings.h;rawfiles.h")
```

22.2.2 cppyy_find_pips

Return a list of available pip programs.
PyPI Packages

23.1 Cppyy

The cppyy module is a frontend (see Package Structure), and most of the code is elsewhere. However, it does contain the docs for all of the modules, which are built using Sphinx: http://www.sphinx-doc.org/en/stable/ and published to http://cppyy.readthedocs.io/en/latest/index.html using a webhook. To create the docs:

```bash
$ pip install sphinx_rtd_theme
Collecting sphinx_rtd_theme
...
Successfully installed sphinx-rtd-theme-0.2.4
$ cd docs
$ make html
```

The Python code in this module supports:

- Interfacing to the correct backend for CPython or PyPy.
- Pythonizations (TBD)

23.2 Cppyy-backend

The cppyy-backend module contains two areas:

- A patched copy of cling
- Wrapper code

23.3 Package structure

There are four PyPA packages involved in a full installation, with the following structure:
The user-facing package is always `cppyy` (1). It is used to select the other (versioned) required packages, based on the python interpreter for which it is being installed.

Below (1) follows a bifurcation based on interpreter. This is needed for functionality and performance: for CPython, there is the CPyCppyy package (2). It is written in C++, makes use of the Python C-API, and installs as a Python extension module. For PyPy, there is the builtin module `_cppyy` (A). This is not a PyPA package. It is written in RPython as it needs access to low-level pointers, JIT hints, and the `_cffi_backend` backend module (itself builtin).

Shared again across interpreters is the backend, which is split in a small wrapper (3) and a large package that contains Cling/LLVM (4). The former is still under development and expected to be updated frequently. It is small enough to download and build very quickly. The latter, however, takes a long time to build, but since it is very stable, splitting it off allows the creation of binary wheels that need updating only infrequently (expected about twice a year).

All code is publicly available; see the section on repositories.
CHAPTER 24

Repositories

The cppyy module is a frontend that requires an intermediate (Python interpreter dependent) layer, and a backend (see Package Structure). Because of this layering and because it leverages several existing packages through reuse, the relevant codes are contained across a number of repositories.

- Frontend, cppyy: https://github.com/wlav/cppyy
- CPython (v2/v3) intermediate: https://github.com/wlav/CPyCppyy
- PyPy intermediate (module _cppyy): https://foss.heptapod.net/pypy
- Backend, cppyy: https://github.com/wlav/cppyy-backend

The backend repo contains both the cppyy-cling (under "cling") and cppyy-backend (under "clingwrapper") packages.

24.1 Building from source

Except for cppyy-cling, the structure in the repositories follows a normal PyPA package and they are thus ready to build with setuptools: simply clone the package and either run python setup.py, or use pip.

It is highly recommended to follow the dependency chain when manually upgrading packages individually (i.e. cppyy-cling, cppyy-backend, CPyCppyy if on CPython, and then finally cppyy), because upstream packages expose headers that are used by the ones downstream. Of course, if only building for a patch/point release, there is no need to re-install the full chain (or follow the order). Always run the local updates from the package directories (i.e. where the setup.py file is located), as some tools rely on the package structure.

The STDCXX envvar can be used to control the C++ standard version; use MAKE to change the make command; and MAKE_NPROCS to control the maximum number of parallel jobs. Compilation of the backend, which contains a customized version of Clang/LLVM, can take a long time, so by default the setup script will use all cores (x2 if hyperthreading is enabled).

On MS Windows, some temporary path names may be too long, causing the build to fail. To resolve this issue, point the TMP and TEMP envvars to an existing directory with a short name before the build: For example:
Start with the `cppyy-cling` package (cppyy-backend repo, subdirectory “cling”), which requires source to be pulled in from upstream, and thus takes a few extra steps:

```
$ git clone https://github.com/wlav/cppyy-backend.git
$ cd cppyy-backend/cling
$ python setup.py egg_info
$ python create_src_directory.py
$ python -m pip install . --upgrade
```

The `egg_info` setup command is needed for `create_src_directory.py` to find the right version. That script in turn downloads the proper release from `upstream`, trims and patches it, and installs the result in the “src” directory. When done, the structure of `cppyy-cling` looks again like a PyPA package and can be used/installed as expected, here using `pip`.

The `cppyy-cling` package, because it contains Cling/Clang/LLVM, is rather large to build, so by default the setup script will use all cores (x2 if hyperthreading is enabled). You can change this behavior with the `MAKE_NPROCS` envvar. The wheel of `cppyy-cling` is reused by pip for all versions of CPython and PyPy, thus the long compilation is needed only once for all different versions of Python on the same machine.

Next up is `cppyy-backend` (cppyy-backend, subdirectory “clingwrapper”; omit the first step if you already cloned the repo for `cppyy-cling`):

```
$ git clone https://github.com/wlav/cppyy-backend.git
$ cd cppyy-backend/clingwrapper
$ python -m pip install . --upgrade --no-use-pep517 --no-deps
```

Note the use of `--no-use-pep517`, which prevents `pip` from needlessly going out to pypi.org and creating a local “clean” build environment from the cached or remote wheels. Instead, by skipping PEP 517, the local installation will be used. This is imperative if there was a change in public headers or if the version of `cppyy-cling` was locally updated and is thus not available on PyPI.

Upgrading CPyCppyy (if on CPython; it’s not needed for PyPy) and `cppyy` is very similar:

```
$ git clone https://github.com/wlav/CPyCppyy.git
$ cd CPyCppyy
$ python -m pip install . --upgrade --no-use-pep517 --no-deps
```

Finally, the top-level package `cppyy`:

```
$ git clone https://github.com/wlav/cppyy.git
$ cd cppyy
$ python -m pip install . --upgrade --no-deps
```

Please see the `pip` documentation for more options, such as developer mode.
The cppyy tests live in the top-level cppyy package, can be run for both CPython and PyPy, and exercises the full setup, including the backend. Most tests are standalone and can be run independently, with a few exceptions in the template tests (see file test_templates.py).

To run the tests, first install cppyy by any usual means, then clone the cppyy repo, and enter the test directory:

```
$ git clone https://github.com/wlav/cppyy.git
$ cd cppyy/test
```

Next, build the dictionaries, the manner of which depends on your platform. On Linux or MacOS-X, run make:

```
$ make all
```

On Windows, run the dictionary building script:

```
$ python make_dict_win32.py all
```

Next, make sure you have pytest installed, for example with pip:

```
$ python -m pip install pytest
```

and finally run the tests:

```
$ python -m pytest -sv
```

On Linux and MacOS-X, all tests should succeed. On MS Windows 32bit there are 4 failing tests, on 64bit there are 5 still failing.
What is now called cppyy started life as RootPython from CERN, but cppyy is not associated with CERN (it is still used there, however, underpinning PyROOT).

Back in late 2002, Pere Mato of CERN, had the idea of using the CINT C++ interpreter, which formed the interactive interface to ROOT, to call from Python into C++: this became RootPython. This binder interfaced with Python through boost.python (v1), transpiling Python code into C++ and interpreting the result with CINT. In early 2003, I ported this code to boost.python v2, then recently released. In practice, however, re-interpreting the transpiled code was unusably slow, thus I modified the code to make direct use of CINT’s internal reflection system, gaining about 25x in performance. I presented this work as PyROOT at the ROOT Users’ Workshop in early 2004, and, after removing the boost.python dependency by using the C-API directly (gaining another factor 7 in speedup!), it was included in ROOT. PyROOT was presented at the SciPy’06 conference, but was otherwise not advocated outside of High Energy Physics (HEP).

In 2010, the PyPy core developers and I held a sprint at CERN to use Reflex, a standalone alternative to CINT’s reflection of C++, to add automatic C++ bindings, PyROOT-style, to PyPy. This is where the name “cppyy” originated. Coined by Carl Friedrich Bolz, if you want to understand the meaning, just pronounce it slowly: cpp-y-y.

After the ROOT team replaced CINT with Cling, PyROOT soon followed. As part of Google’s Summer of Code ’16, Aditi Dutta moved PyPy/cppyy to Cling as well, and packaged the code for use through PyPI. I continued this integration with the Python eco-system by forking PyROOT, reducing its dependencies, and repackaging it as CPython/cppyy. The combined result is the current cppyy project. Mid 2018, version 1.0 was released.
As a Python-C++ language binder, cppyy has several unique features: it fills gaps and covers use cases not available through other binders. This document explains some of the design choices made and the thinking behind the implementations of those features. It’s categorized as “philosophy” because a lot of it is open to interpretation. Its main purpose is simply to help you decide whether cppyy covers your use cases and binding requirements, before committing any time to trying it out.

27.1 Run-time v.s. compile-time

What performs better, run-time or compile-time? The obvious answer is compile-time: see the performance differences between C++ and Python, for example. Obvious, but completely wrong, however. In fact, when it comes to Python, it is even the wrong question.

Everything in Python is run-time: modules, classes, functions, etc. are all run-time constructs. A Python module that defines a class is a set of instructions to the Python interpreter that lead to the construction of the desired class object. A C/C++ extension module that defines a class does the same thing by calling a succession of Python interpreter Application Programming Interfaces (APIs; the exact same that Python uses itself internally). If you use a compile-time binder such as SWIG or pybind11 to bind a C++ class, then what gets compiled is the series of API calls necessary to construct a Python-side equivalent at run-time (when the module gets loaded), not the Python class object. In short, whether a binding is created at “compile-time” or at run-time has no measurable bearing on performance.

What does affect performance is the overhead to cross the language barrier. This consists of unboxing Python objects to extract or convert the underlying objects or data to something that matches what C++ expects; overload resolution based on the unboxed arguments; offset calculations; and finally the actual dispatch. As a practical matter, overload resolution is the most costly part, followed by the unboxing and conversion. Best performance is achieved by specialization of the paths through the run-time: recognize early the case at hand and select an optimized path. For that reason, PyPy is so fast: JIT-ed traces operate on unboxed objects and resolved overloads are baked into the trace, incurring no further cost. Similarly, this is why pybind11 is so slow: its code generation is the C++ compiler’s template engine, so complex path selection and specialization is very hard to do in a performance-portable way.

In cppyy, a great deal of attention has gone into built-in specialization paths, which drives its performance. For example, basic inheritance sequentially lines up classes, whereas multiple (virtual) inheritance usually requires thunks. Thus, when calling base class methods on a derived instance, the latter requires offset calculations that depend on
that instance, whereas the former has fixed offsets fully determined by the class definitions themselves. By labeling classes appropriately, single inheritance classes (by far the most common case) do not incur the overhead in PyPy’s JIT-ed traces that is otherwise unavoidable for multiple virtual inheritance. As another example, consider that the C++ standard does not allow modifying a `std::vector` while looping over it, whereas Python has no such restriction, complicating loops. Thus, cppyy has specialized `std::vector` iteration for both PyPy and CPython, easily outperforming looping over an equivalent numpy array.

In CPython, the performance of non-overloaded function calls depends greatly on the Python interpreter’s internal specializations; and Python3 has many specializations specific to basic extension modules (C function pointer calls), gaining a performance boost of more than 30% over Python2. Only since Python3.8 is there also better support for closure objects (vector calls) as cppyy uses, to short-cut through the interpreter’s own overhead.

As a practical consideration, whether a binder performs well on code that you care about, depends entirely on whether it has the relevant specializations for your most performance-sensitive use cases. The only way to know for sure is to write a test application and measure, but a binder that provides more specializations, or makes it easy to add your own, is more likely to deliver.

### 27.2 Manual v.s. automatic

Python is, today, one of the most popular programming languages and has a rich and mature eco-system around it. But when the project that became cppyy started in the field of High Energy Physics (HEP), Python usage was non-existent there. As a Python user to work in this predominantly C++ environment, you had to bring your own bindings, thus automatic was the only way to go. Binders such as SWIG, SIP (or even boost.python with Pyste) all had the fatal assumption that you were providing Python bindings to your own C++ code, and that you were thus able to modify those (many) areas of the C++ codes that their parsers could not handle. The CINT interpreter was already well established in HEP, however, and although it, too, had many limitations, C++ developers took care not to write code that it could not parse. In particular, since CINT drove automatic I/O, all data classes as needed for analysis were parsable by CINT and consequently, by using CINT for the bindings, at the very least one could run any analysis in Python. This was key.

Besides not being able to parse some code (a problem that’s history for cppyy since moving to Cling), all automatic parsers suffer from the problem that the bindings produced have a strong “C++ look-and-feel” and that choices need to be made in cases that can be bound in different, equally valid, ways. As an example of the latter, consider the return of an `std::vector`: should this be automatically converted to a Python `list`? Doing so is more “pythonic”, but incurs a significant overhead, and no automatic choice will satisfy all cases: user input is needed.

The typical way to solve these issues, is to provide an intermediate language where corner cases can be brushed up, code can be made more Python friendly, and design choices can be resolved. Unfortunately, learning an intermediate language is quite an investment in time and effort. With cppyy, however, no such extra language is needed: using Cling, C++ code can be embedded and JIT-ed for the same purpose. In particular, cppyy can handle boxed Python objects and the full Python C-API is available through Cling, allowing complete manual control where necessary, and all within a single code base. Similarly, a more pythonistic look-and-feel can be achieved in Python itself. As a rule, Python is always the best place, far more so than any intermediate language, to do Python-thingies. Since all bound proxies are normal Python classes, functions, etc., Python’s introspection (and regular expressions engine) can be used to provide rule based improvements in a way similar to the use of directives in an intermediate language.

On a practical note, it’s often said that an automatic binder can provide bindings to 95% of your code out-of-the-box, with only the remaining part needing manual intervention. This is broadly true, but realize that that 5% contains the most difficult cases and is where 20-30% of the effort would have gone in case the bindings were done fully manually. It is therefore important to consider what manual tools an automatic binder offers and to make sure they fit your work style and needs, because you are going to spend a significant amount of time with them.
27.3 LLVM dependency

cppyy depends on LLVM, through Cling. LLVM is properly internalized, so that it doesn’t conflict with other uses; and in particular it is fine to mix Numba and cppyy code. It does mean a download cost of about 20MB for the binary wheel (exact size differs per platform) on installation, and additional primarily initial memory overheads at run-time. Whether this is onerous depends strongly not only on the application, but also on the rest of the software stack.

The initial cost of loading cppyy, and thus starting the Cling interpreter, is about 45MB (platform dependent). Initial uses of standard (e.g. STL) C++ results in deserialization of the precompiled header at another eventual total cost of about 25MB (again, platform dependent). The actual bindings of course also carry overheads. As a rule of thumb, you should budget for ~100MB all-in for the overhead caused by the bindings.

Other binders do not have this initial memory overhead, but do of course occur an overhead per module, class, function, etc. At scale, however, cppyy has some advantages: all binding is lazy (including the option of automatic loading), standard classes are never duplicated, and there is no additional “per-module” overhead. Thus, eventually (depending on the number of classes bound, across how many modules, what use fraction, etc.), this initial cost is recouped when compared to other binders. As a rule of thumb, if about 10% of classes are used, it takes several hundreds of bound classes before the cppyy-approach is beneficial. In High Energy Physics, from which it originated, cppyy is regularly used in software stacks of many thousands of classes, where this advantage is very important.

27.4 Distributing headers

cppyy requires C/C++ headers to be available at run-time, which was never a problem in the developer-centric world from which it originated: software always had supported C++ APIs already, made available through header files, and Python simply piggy-backed onto those. JIT-ing code in those headers, which potentially picked up system headers that were configured differently, was thus also never a problem. Or rather, the same problem exists for C++, and configuration for C++ to resolve potential issues translates transparently to Python.

There are only two alternatives: precompile headers into LLVM bitcode and distribute those or provide a restricted set of headers. Precompiled headers (and modules) were never designed to be portable and relocatable, however, thus that may not be the panacea it seems. A restricted set of headers is some work, but cppyy can operate on abstract interface classes just fine (including Python-side cross-inheritance).

27.5 Large deployment

The single biggest headache in maintaining an installation of Python extension modules is that Python patch releases can break them. The two typical solutions are to either restrict the choice of Python interpreter and version that are supported (common in HPC) or to provide binaries (wheels) for a large range of different interpreters and versions (as e.g. done for conda).

In the case of cppyy, only CPython/CPyCppyy and PyPy/_cppyy (an internal module) depend on the Python interpreter (see: Package Structure). The user-facing cppyy module is pure Python and the backend (Cling) is Python-independent. Most importantly, since all bindings are generated at run-time, there are no extension modules to regenerate and/or recompile.

Thus, the end-user only needs to rebuild/reinstall CPyCppyy for each relevant version of Python (and nothing extra is needed for PyPy) to switch Python versions and/or interpreter. The rest of the software stack remains completely unchanged. Only if Cling in cppyy’s backend is updated, which happens infrequently, and non-standard precompiled headers or modules are used, do these need to be rebuilt in full.
Please report bugs or requests for improvement on the issue tracker.