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cppyy is an automatic, run-time, Python-C++ bindings generator, for calling C++ from Python and Python from
C++. Run-time generation enables detailed specialization for higher performance, lazy loading for reduced memory
use in large scale projects, Python-side cross-inheritance and callbacks for working with C++ frameworks, run-time
template instantiation, automatic object downcasting, exception mapping, and interactive exploration of C++ libraries.
cppyy delivers this without any language extensions, intermediate languages, or the need for boiler-plate hand-written
code. For design and performance, see this PyHPC paper, albeit that the CPython/cppyy performance has been vastly
improved since.

cppyy is based on Cling, the C++ interpreter, to match Python’s dynamism, interactivity, and run-time behavior.
Consider this session, showing dynamic, interactive, mixing of C++ and Python features (there are more examples
throughout the documentation and in the tutorial):

>>> import cppyy
>>> cppyy.cppdef("""
... class MyClass {
... public:
... MyClass(int i) : m_data(i) {}
... virtual ~MyClass() {}
... virtual int add_int(int i) { return m_data + i; }
... int m_data;
... };""")
True
>>> from cppyy.gbl import MyClass
>>> m = MyClass(42)
>>> cppyy.cppdef("""
... void say_hello(MyClass* m) {
... std::cout << "Hello, the number is: " << m->m_data << std::endl;
... }""")
True
>>> MyClass.say_hello = cppyy.gbl.say_hello
>>> m.say_hello()
Hello, the number is: 42
>>> m.m_data = 13
>>> m.say_hello()
Hello, the number is: 13
>>> class PyMyClass(MyClass):
... def add_int(self, i): # python side override (CPython only)
... return self.m_data + 2*i
...
>>> cppyy.cppdef("int callback(MyClass* m, int i) { return m->add_int(i); }")
True
>>> cppyy.gbl.callback(m, 2) # calls C++ add_int
15
>>> cppyy.gbl.callback(PyMyClass(1), 2) # calls Python-side override
5
>>>

With a modern C++ compiler having its back, cppyy is future-proof. Consider the following session using
boost::any, a capsule-type that allows for heterogeneous containers in C++. The Boost library is well known
for its no holds barred use of modern C++ and heavy use of templates:

>>> import cppyy
>>> cppyy.include('boost/any.hpp') # assumes you have boost installed
>>> from cppyy.gbl import std, boost
>>> val = boost.any() # the capsule
>>> val.__assign__(std.vector[int]()) # assign it a std::vector<int>
<cppyy.gbl.boost.any object at 0xf6a8a0>

(continues on next page)
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(continued from previous page)

>>> val.type() == cppyy.typeid(std.vector[int]) # verify type
True
>>> extract = boost.any_cast[int](std.move(val)) # wrong cast
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
cppyy.gbl.boost.bad_any_cast: Could not instantiate any_cast<int>:

int boost::any_cast(boost::any&& operand) =>
wrapexcept<boost::bad_any_cast>: boost::bad_any_cast: failed conversion using

→˓boost::any_cast
>>> extract = boost.any_cast[std.vector[int]](val) # correct cast
>>> type(extract) is std.vector[int]
True
>>> extract += xrange(100)
>>> len(extract)
100
>>> val.__assign__(std.move(extract)) # move forced
<cppyy.gbl.boost.any object at 0xf6a8a0>
>>> len(extract) # now empty (or invalid)
0
>>> extract = boost.any_cast[std.vector[int]](val)
>>> list(extract)
[0, 1, 2, 3, 4, 5, 6, ..., 97, 98, 99]
>>>

Of course, there is no reason to use Boost from Python (in fact, this example calls out for pythonizations), but it shows
that cppyy seamlessly supports many advanced C++ features.

cppyy is available for both CPython (v2 and v3) and PyPy, reaching C++-like performance with the latter. It makes
judicious use of precompiled headers, dynamic loading, and lazy instantiation, to support C++ programs consisting of
millions of lines of code and many thousands of classes. cppyy minimizes dependencies to allow its use in distributed,
heterogeneous, development environments.

2 Contents
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CHAPTER 1

Changelog

For convenience, this changelog keeps tracks of changes with version numbers of the main cppyy package, but many
of the actual changes are in the lower level packages, which have their own releases. See packages, for details on the
package structure. PyPy support lags CPython support.

1.1 2022-04-03: 2.3.1

• Use portable type Py_ssize_t instead of ssize_t

1.2 2022-03-08: 2.3.0

• CUDA support (up to version 10.2)

• Allow std::string_view<char> initialization from Python str (copies)

• Provide access to extern “C” declared functions in namespaces

• Support for (multiple and nested) anonymous structs

• Pull forward upstream patch for PPC

• Only apply system_dirs patch (for asan) on Linux

• Add unloaded classes to namespaces in dir()

• Fix lookup of templates of function with template args

• Fix lookup of templates types with << in name

• Fix regression for accessing char16_t data member arrays

• Add custom __reshape__ method to CPPInstance to allow array cast

• Prioritize callee exceptions over bindings exceptions

• Prevent infinite recursion when instantiating class with no constructors

3
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1.3 2021-11-14: 2.2.0

• Migrated repos to github/wlav

• Properly resolve enum type of class enums

• Get proper shape of void* and enum arrays

• Fix access to (const) ref data members

• Fix sometimes PCH uninstall issue

• Fix argument passing of fixed arrays of pointers

• Include all gcc system paths (for asan)

• Initial support for Apple M1

1.4 2021-07-17: 2.1.0

• Support for vector calls with CPython 3.8 and newer

• Support for typed C++ literals as defaults when mixing with keywords

• Enable reshaping of multi-dim LowLevelViews

• Refactored multi-dim arrays and support for multi-dim assignment

• Support tuple-based indexing for multi-dim arrays

• Direct support for C’s _Complex (_Complex_double/_float on Windows)

• sizeof() forwards to ctypes.sizeof() for ctypes’ types

• Upgrade cmake fragments for Clang9

• Prevent clash with Julia’s LLVM when loading cppyy into PyCall

• Upgrade to latest Cling patch release

1.5 2021-05-14: 2.0.0

• Upgrade to latest Cling based on Clang/LLVM 9

• Make C++17 the default standard on Windows

1.6 2021-04-28: 1.9.6

• Reverse operators for std::complex targeting Python’s complex

• Version the precompiled header with the cppyy-cling package version

• Cover more iterator protocol use cases

• Add missing cppyy/__pyinstaller pkg to sdist

• Single-inheritance support for cross-inherited templated constructors

• Disallow float -> const long long& conversion

4 Chapter 1. Changelog
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• Capture python exception message string in PyException from callbacks

• Thread safety in enum lookups

1.7 2021-03-22: 1.9.5

• Do not regulate direct smart pointers (many to one can lead to double deletion)

• Use pkg_resources of CPyCppyy, if available, to find the API include path

1.8 2021-03-17: 1.9.4

• Fix for installing into a directory that has a space in the name

• Fix empty collection printing through Cling on 64b Windows

• Fix accidental shadowing of derived class typedefs by same names in base

• Streamlined templated function lookups in namespaces

• Fix edge cases when decomposing std::function template arguments

• Enable multi-cross inheritance with non-C++ python bases

• Support Bound C++ functions as template argument

• Python functions as template arguments from __annotations__ or __cpp_name__

• Removed functions/apis deprecated in py3.9

• Improved support for older pip and different installation layouts

1.9 2021-02-15: 1.9.3

• Wheels for Linux now follow manylinux2014

• Enable direct calls of base class’ methods in Python cross-overrides

• cppyy.bind_object can now re-cast types, incl. Python cross-derived ones

• Python cross-derived objects send to (and owned by) C++ retain Python state

• Ignore, for symbol lookups, libraries that can not be reloaded

• Use PathCanonicalize when resolving paths on Windows

• Add more ways of finding the backend library

• Improve error reporting when failed to find the backend library

• Workaround for mixing std::endl in JIT-ed and compiled code on Windows 32b

• Fixed a subtle crash that arises when an invalid using is the last method

• Filter -fno-plt (coming from anaconda builds; not understood by Cling)

• Fixed memory leak in generic base __str__

1.7. 2021-03-22: 1.9.5 5



cppyy Documentation, Release 2.0.0

1.10 2021-01-05: 1.9.2

• Added cppyy.types module for exposing cppyy builtin types

• Improve numpy integration with custom __array__ methods

• Allow operator overload resolution mixing class and global methods

• Installation fixes for PyPy when using pip

1.11 2020-11-23: 1.9.1

• Fix custom installer in pip sdist

1.12 2020-11-22: 1.9.0

• In-tree build resolving build/install order for PyPy with pyproject.toml

• std::string not converterd to str on function returns

• Cover more use cases where C string memory can be managed

• Automatic memory management of converted python functions

• Added pyinstaller hooks (https://stackoverflow.com/questions/64406727)

• Support for enums in pseudo-constructors of aggregates

• Fixes for overloaded/split-access protected members in cross-inheritance

• Support for deep, mixed, hierarchies for multi-cross-inheritance

• Added tp_iter method to low level views

1.13 2020-11-06: 1.8.6

• Fix preprocessor macro of CPyCppyy header for Windows/MSVC

1.14 2020-10-31: 1.8.5

• Fix leaks when using vector iterators on Py3/Linux

1.15 2020-10-10: 1.8.4

• std::string globals/data members no longer automatically converted to str

• New methods for std::string to allow str interchangability

• Added a decode method to std::string

• Add pythonized __contains__ to std::set

6 Chapter 1. Changelog
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• Fix constructor generation for aggregates with static data

• Fix performance bug when using implicit conversions

• Fix memory overwrite when parsing during sorting of methods

• PyPy pip install again falls back to setup.py install

1.16 2020-09-21: 1.8.3

• Add initializer constructors for PODs and aggregates

• Use actual underlying type for enums, where possible

• Enum values remain instances of their type

• Expose enum underlying type name as __underlying and __ctype__

• Strictly follow C++ enum scoping rules

• Same enum in transparent scope refers to same type

• More detailed enum repr() printing, where possible

• Fix for (extern) explicit template instantiations in namespaces

• Throw objects from an std::tuple a life line

• Global pythonizors now always run on all classes

• Simplified iteraton over STL-like containers defining begin()/end()

1.17 2020-09-08: 1.8.2

• Add cppyy.set_debug() to enable debug output for fixing template errors

• Cover more partial template instantiation use cases

• Force template instantiation if necessary for type deduction (i.e. auto)

1.18 2020-09-01: 1.8.1

• Setup build dependencies with pyproject.toml

• Simplified flow of pointer types for callbacks and cross-derivation

• Pointer-comparing objects performs auto-cast as needed

• Add main dimension for ptr-ptr to builtin returns

• Transparant handling of ptr-ptr to instance returns

• Stricter handling of bool type in overload with int types

• Fix uint64_t template instantiation regression

• Do not filter out enum data for __dir__

• Fix lookup of interpreter-only explicit instantiations

• Fix inconsistent naming of std types with char_traits

1.16. 2020-09-21: 1.8.3 7
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• Further hiding of upstream code/dependencies

• Extended documentation

1.19 2020-07-12: 1.8.0

• Support mixing of Python and C++ types in global operators

• Capture Cling error messages from cppdef and include in the Python exception

• Add a cppexec method to evalutate statements in Cling’s global scope

• Support initialization of std::array<> from sequences

• Support C++17 style initialization of common STL containers

• Allow base classes with no virtual destructor (with warning)

• Support const by-value returns in Python-side method overrides

• Support for cross-language multiple inheritance of C++ bases

• Allow for pass-by-value of std::unique_ptr through move

• Reduced dependencies on upstream code

• Put remaining upstream code in CppyyLegacy namespace

1.20 2020-06-06: 1.7.1

• Expose protected members in Python derived classes

• Support for deep Python-side derived hierarchies

• Do not generate a copy ctor in the Python derived class if private

• include, c_include, and cppdef now raise exceptions on error

• Allow mixing of keywords and default values

• Fix by-ptr return of objects in Python derived classes

• Fix for passing numpy boolean array through bool*

• Fix assignment to const char* data members

• Support __restrict and __restrict__ in interfaces

• Allow passing sequence of strings through const char*[] argument

1.21 2020-04-27: 1.7.0

• Upgrade to cppyy-cling 6.20.4

• Pre-empt upstream’s propensity of making std classes etc. global

• Allow initialization of std::map from dict with the correct types

• Allow initialization of std::set from set with the correct types

• Add optional nonst/non-const selection to __overload__

8 Chapter 1. Changelog
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• Automatic smartification of normal object passed as smartptr by value

• Fix crash when handing a by-value object to make_shared

• Fixed a few shared/unique_ptr corner cases

• Fixed conversion of std::function taking an STL class parameter

• No longer attempt auto-cast on classes without RTTI

• Fix for iter() iteration on generic STL container

1.22 2020-03-15: 1.6.2

• Respect __len__ when using bound C++ objects in boolean expressions

• Support UTF-8 encoded unicode through std::string

• Support for std::byte

• Enable assignment to function pointer variable

• Allow passing cppyy.nullptr where a function pointer is expected

• Disable copy construction into constructed object (use __assign__ instead)

• Cover more cases when to set a lifeline

• Lower priority of implicit conversion to temporary with initializer_list ctor

• Add type reduction pythonization for trimming expression template type trees

• Allow mixing std::string and str as dictionary keys

• Support C-style pointer-to-struct as array

• Support C-style enum variable declarations

• Fixed const_iterator by-ref return type regression

• Resolve enums into the actual underlying type instead of int

• Remove ‘-isystem’ from makepch flags

• Extended documentation

1.23 2020-01-04: 1.6.1

• Mapped C++ exception reporting detailing

• Mapped C++ exception cleanup bug fix

• STL vector constructor passes the CPython sequence construction

• STL vector slicing passes the CPython sequence slicing tests

• Extended documentation

1.22. 2020-03-15: 1.6.2 9
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1.24 2019-12-23: 1.6.0

• Classes derived from std::exception can be used as Python exceptions

• Template handling detailing (for Eigen)

• Support keyword arguments

• Added add_library_path at module level

• Extended documentation

• Fix regression bugs: #176, #179, #180, #182

1.25 2019-11-07: 1.5.7

• Allow implicit converions for move arguments

• Choose vector over initializer_list if part of the template argument list

1.26 2019-11-03: 1.5.6

• Added public C++ API for some CPyCppyy core functions (CPython only)

• Support for char16_t/char16_t* and char32_t/char32_t*

• Respect std::hash in __hash__

• Fix iteration over vector of shared_ptr

• Length checking on global variables of type ‘signed char[N]’

• Properly support overloaded templated with non-templated __setitem__

• Support for array of const char* as C-strings

• Enable type resolution of clang’s builtin __type_pack_element

• Fix for inner class type naming when it directly declares a variable

1.27 2019-10-16: 1.5.5

• Added signal -> exception support in cppyy.ll

• Support for lazily combining overloads of operator*/+-

• No longer call trivial destructors

• Support for free function unary operators

• Refactored and optimized operator==/!= usage

• Refactored converters/executors for lower memory usage

• Bug fixes in rootcling and _cppyy_generator.py

10 Chapter 1. Changelog
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1.28 2019-09-25: 1.5.4

• operator+/* now respect C++-side associativity

• Fix potential crash if modules are reloaded

• Fix some portability issues on Mac/Windows of cppyy-cling

1.29 2019-09-15: 1.5.3

• Performance improvements

• Support for anonymous/unnamed/nested unions

• Extended documentation

1.30 2019-09-06: 1.5.2

• Added a “low level” interface (cppyy.ll) for hard-casting and ll types

• Extended support for passing ctypes arguments through ptr, ref, ptr-ptr

• Fixed crash when creating an array of instances of a scoped inner struct

• Extended documentation

1.31 2019-08-26: 1.5.1

• Upgrade cppyy-cling to 6.18.2

• Various patches to upstream’s pre-compiled header generation and use

• Instantiate templates with larger integer types if argument values require

• Improve cppyy.interactive and partially enable it on PyPy, IPython, etc.

• Let __overload__ be more flexible in signature matching

• Make list filtering of dir(cppyy.gbl) on Windows same as Linux/Mac

• Extended documentation

1.32 2019-08-18: 1.5.0

• Upgrade cppyy-cling to 6.18.0

• Allow python-derived classes to be used in templates

• Stricter template resolution and better caching/performance

• Detailed memory management for make_shared and shared_ptr

• Two-way memory management for cross-inherited objects

• Reduced memory footprint of proxy objects in most common cases

1.28. 2019-09-25: 1.5.4 11
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• Allow implicit conversion from a tuple of arguments

• Data set on namespaces reflected on C++ even if data not yet bound

• Generalized resolution of binary operators in wrapper generation

• Proper naming of arguments in namespaces for std::function<>

• Cover more cases of STL-liker iterators

• Allow std::vector initialization with a list of constructor arguments

• Consistent naming of __cppname__ to __cpp_name__

• Added __set_lifeline__ attribute to overloads

• Fixes to the cmake fragments for Ubuntu

• Fixes linker errors on Windows in some configurations

• Support C++ naming of typedef of bool types

• Basic views of 2D arrays of builtin types

• Extended documentation

1.33 2019-07-01 : 1.4.12

• Automatic conversion of python functions to std::function arguments

• Fix for templated operators that can map to different python names

• Fix on p3 crash when setting a detailed exception during exception handling

• Fix lookup of std::nullopt

• Fix bug that prevented certain templated constructors from being considered

• Support for enum values as data members on “enum class” enums

• Support for implicit conversion when passing by-value

1.34 2019-05-23 : 1.4.11

• Workaround for JITed RTTI lookup failures on 64b MS Windows

• Improved overload resolution between f(void*) and f<>(T*)

• Minimal support for char16_t (Windows) and char32_t (Linux/Mac)

• Do not unnecessarily autocast smart pointers

1.35 2019-05-13 : 1.4.10

• Imported several FindCppyy.cmake improvements from Camille’s cppyy-bbhash

• Fixes to cppyy-generator for unresolved templates, void, etc.

• Fixes in typedef parsing for template arguments in unknown namespaces

• Fix in templated operator code generation

12 Chapter 1. Changelog
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• Fixed ref-counting error for instantiated template methods

1.36 2019-04-25 : 1.4.9

• Fix import error on pypy-c

1.37 2019-04-22 : 1.4.8

• std::tuple is now iterable for return assignments w/o tie

• Support for opaque handles and typedefs of pointers to classes

• Keep unresolved enums desugared and provide generic converters

• Treat int8_t and uint8_t as integers (even when they are chars)

• Fix lookup of enum values in global namespace

• Backported name mangling (esp. for static/global data lookup) for 32b Windows

• Fixed more linker problems with malloc on 64b Windows

• Consistency in buffer length calculations and c_int/c_uint handling on Windows

• Properly resolve overloaded functions with using of templates from bases

• Get templated constructor info from decl instead of name comparison

• Fixed a performance regression for free functions.

1.38 2019-04-04 : 1.4.7

• Enable initializer_list conversion on Windows as well

• Improved mapping of operator() for indexing (e.g. for matrices)

• Implicit conversion no longer uses global state to prevent recursion

• Improved overload reordering

• Fixes for templated constructors in namespaces

1.39 2019-04-02 : 1.4.6

• More transparent use of smart pointers such as shared_ptr

• Expose versioned std namespace through using on Mac

• Improved error handling and interface checking in cross-inheritance

• Argument of (const/non-const) ref types support in callbacks/cross-inheritance

• Do template argument resolution in order: reference, pointer, value

• Fix for return type deduction of resolved but uninstantiated templates

• Fix wrapper generation for defaulted arguments of private types

1.36. 2019-04-25 : 1.4.9 13
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• Several linker fixes on 64b Windows

1.40 2019-03-25 : 1.4.5

• Allow templated free functions to be attached as methods to classes

• Allow cross-derivation from templated classes

• More support for ‘using’ declarations (methods and inner namespaces)

• Fix overload resolution for std::set::rbegin()/rend() operator==

• Fixes for bugs #61, #67

• Several pointer truncation fixes for 64b Windows

• Linker and lookup fixes for Windows

1.41 2019-03-20 : 1.4.4

• Support for ‘using’ of namespaces

• Improved support for alias templates

• Faster template lookup

• Have rootcling/genreflex respect compile-time flags (except for –std if overridden by CLING_EXTRA_FLAGS)

• Utility to build dictionarys on Windows (32/64)

• Name mangling fixes in Cling for JITed global/static variables on Windows

• Several pointer truncation fixes for 64b Windows

1.42 2019-03-10 : 1.4.3

• Cross-inheritance from abstract C++ base classes

• Preserve ‘const’ when overriding virtual functions

• Support for by-ref (using ctypes) for function callbacks

• Identity of nested typedef’d classes matches actual

• Expose function pointer variables as std::function’s

• More descriptive printout of global functions

• Ensure that standard pch is up-to-date and that it is removed on uninstall

• Remove standard pch from wheels on all platforms

• Add -cxxflags option to rootcling

• Install clang resource directory on Windows

14 Chapter 1. Changelog



CHAPTER 2

License and copyright

Copyright (c) 2017-2021, The Regents of the University of California, through Lawrence Berkeley National Labora-
tory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided that the following conditions
are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer. (2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution. (3) Neither the
name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of
its contributors may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such Enhancements or derivative works thereof, in binary and source code form.

15



cppyy Documentation, Release 2.0.0

2.1 Additional copyright holders

In addition to LBNL/UC Berkeley, this package contains files copyrighted by one or more of the following people and
organizations, and licensed under the same conditions (except for some compatible licenses as retained in the source
code):

• CERN

• Lucio Asnaghi

• Simone Bacchio

• Robert Bradshaw

• Ellis Breen

• Antonio Cuni

• Aditi Dutta

• Shaheed Haque

• Jonsomi

• Max Kolin

• Alvaro Moran

• Tarmo Pikaro

• Matti Picus

• Camille Scott

• Toby StClere-Smithe

• Stefan Wunsch

Conda-forge recipes were provided by Julian Rueth and Isuru Fernando.

2.2 External code

The create_src_directory.py script will pull in ROOT and LLVM sources, which are licensed differently:

LLVM: distributed under University of Illinois/NCSA Open Source License https://opensource.org/
licenses/UoI-NCSA.php

ROOT: distributed under LGPL 2.1 https://root.cern.ch/license

The ROOT and LLVM/Clang codes are modified/patched, as part of the build process.

16 Chapter 2. License and copyright
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CHAPTER 3

Installation

cppyy requires a (modern) C++ compiler. When installing through conda-forge, conda will install the compiler for
you, to match the other conda-forge packages. When using pip and the wheels from PyPI, you minimally need gcc5,
clang5, or MSVC’17. When installing from source, the only requirement is full support for C++11 (e.g. minimum gcc
4.8.1 on GNU/Linux), but older compilers than the ones listed for the wheels have not been tested.

With CPython on Linux or MacOS, probably by far the easiest way to install cppyy, is through conda-forge on Ana-
conda (or miniconda). A Windows recipe for conda is not available yet, but is forthcoming, so use pip for that
platform for now (see below). PyPI always has the authoritative releases (conda-forge pulls the sources from there),
so conda-forge may sometimes lag PyPI. If you absolutely need the latest release, use PyPI or consider building from
source.

To install using conda, create and/or activate your (new) work environment and install from the conda-forge channel:

$ conda create -n WORK
$ conda activate WORK
(WORK) $ conda install -c conda-forge cppyy
(WORK) [current compiler] $

To install with pip through PyPI, it is recommend to use virtualenv (or module venv for modern pythons). The use
of virtualenv prevents pollution of any system directories and allows you to wipe out the full installation simply by
removing the virtualenv created directory (“WORK” in this example):

$ virtualenv WORK
$ source WORK/bin/activate
(WORK) $ python -m pip install cppyy
(WORK) $

If you use the --user option to pip and use pip directly on the command line, instead of through python, make
sure that the PATH envar points to the bin directory that will contain the installed entry points during the installation,
as the build process needs them. You may also need to install wheel first if you have an older version of pip and/or
do not use virtualenv (which installs wheel by default). Example:

$ python -m pip install wheel --user
$ PATH=$HOME/.local/bin:$PATH python -m pip install cppyy --user
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3.1 Wheels on PyPI

Wheels for the backend (cppyy-cling) are available on PyPI for GNU/Linux, MacOS-X, and MS Windows (both
32b and 64b). The Linux wheels are built for manylinux2014, but with the dual ABI enabled. The wheels for MS
Windows were build with MSVC Community Edition 2017.

There are no wheels for the CPyCppyy and cppyy packages, to allow the C++ standard chosen to match the local
compiler.

3.2 pip with conda

Although installing cppyy through conda-forge is recommended, it is possible to build/install with pip under Ana-
conda/miniconda.

Typical Python extensions only expose a C interface for use through the Python C-API, requiring only calling con-
ventions (and the Python C-API version, of course) to match to be binary compatible. Here, cppyy differs because it
exposes C++ APIs: it thus requires a C++ run-time that is ABI compatible with the C++ compiler that was used during
build-time.

A set of modern compilers is available through conda-forge, but are only intended for use with conda-build. In
particular, the corresponding run-time is installed (for use through rpath when building), but not set up. That is, the
conda compilers are added to PATH but not their libraries to LD_LIBRARY_PATH (Mac, Linux; PATH for both on
MS Windows). Thus, you get the conda compilers and your system libraries mixed in the same build environment,
unless you set LD_LIBRARY_PATH (PATH on Windows) explicitly, e.g. by adding $CONDA_PREFIX/lib. Note
that the conda documentation recommends against this. Furthermore, the compilers from conda-forge are not vanilla
distributions: header files have been modified, which can can lead to parsing problems if your system C library does
not support C11, for example.

Nevertheless, with the above caveats, if your system C/C++ run-times are new enough, the following can be made to
work:

$ conda create -n WORK
$ conda activate WORK
(WORK) $ conda install python
(WORK) $ conda install -c conda-forge compilers
(WORK) [current compiler] $ python -m pip install cppyy

3.3 C++ standard with pip

The C++17 standard is the default for Mac and Linux (both PyPI and conda-forge); but it is C++14 for MS Windows
(compiler limitation). When installing from PyPI using pip, you can control the standard selection by setting the
STDCXX envar to ‘17’, ‘14’, or ‘11’ (for Linux, the backend does not need to be recompiled). Note that the build will
lower your choice if the compiler used does not support a newer standard.

3.4 Install from source

To build an existing release from source, tell pip to not download any binary wheels. Build-time only dependencies
are cmake (for general build), python (obviously, but also for LLVM), and a modern C++ compiler (one that
supports at least C++11). Use the envar STDCXX to control the C++ standard version; MAKE to change the make
command, MAKE_NPROCS to control the maximum number of parallel jobs allowed, and VERBOSE=1 to see full
build/compile commands. Example (using --verbose to see pip progress):
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$ STDCXX=17 MAKE_NPROCS=32 pip install --verbose cppyy --no-binary=cppyy-cling

Compilation of the backend, which contains a customized version of Clang/LLVM, can take a long time, so by default
the setup script will use all cores (x2 if hyperthreading is enabled). Once built, however, the wheel of cppyy-cling
is reused by pip for all versions of CPython and for PyPy, thus the long compilation is needed only once for all different
versions of Python on the same machine.

See the section on repos for more details/options.

3.5 PyPy

PyPy 5.7 and 5.8 have a built-in module cppyy. You can still install the cppyy package, but the built-in module takes
precedence. To use cppyy, first import a compatibility module:

$ pypy
[PyPy 5.8.0 with GCC 5.4.0] on linux2
>>>> import cppyy_compat, cppyy
>>>>

You may have to set LD_LIBRARY_PATH appropriately if you get an EnvironmentError (it will indicate the
needed directory).

Note that your python interpreter (whether CPython or pypy-c) may not have been linked by the C++ compiler.
This can lead to problems during loading of C++ libraries and program shutdown. In that case, re-linking is highly
recommended.

Very old versions of PyPy (5.6.0 and earlier) have a built-in cppyy based on Reflex, which is less feature-rich and no
longer supported. However, both the distribution utilities and user-facing Python codes are very backwards compatible,
making migration straightforward.

3.6 Precompiled header

For performance reasons (reduced memory and CPU usage), a precompiled header (PCH) of the system and compiler
header files will be installed or, failing that, generated on startup. Obviously, this PCH is not portable and should not
be part of any wheel.

Some compiler features, such as AVX, OpenMP, fast math, etc. need to be active during compilation of the PCH, as
they depend both on compiler flags and system headers (for intrinsics, or API calls). You can control compiler flags
through the EXTRA_CLING_ARGS envar and thus what is active in the PCH. In principle, you can also change the
C++ language standard by setting the appropriate flag on EXTRA_CLING_ARGS and rebuilding the PCH. However,
if done at this stage, that disables some automatic conversion for C++ types that were introduced after C++11 (such as
string_view and optional).

If you want multiple PCHs living side-by-side, you can generate them yourself (note that the given path must be
absolute):

>>> import cppyy_backend.loader as l
>>> l.set_cling_compile_options(True) # adds defaults to EXTRA_CLING_ARGS
>>> install_path = '/full/path/to/target/location/for/PCH'
>>> l.ensure_precompiled_header(install_path)

You can then select the appropriate PCH with the CLING_STANDARD_PCH envar:
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$ export CLING_STANDARD_PCH=/full/path/to/target/location/for/PCH/allDict.cxx.pch

Or disable it completely by setting that envar to “none”.

Note: Without the PCH, the default C++ standard will be the one with which cppyy-cling was built.
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CHAPTER 4

Trying it out

This is a basic guide to try cppyy and see whether it works for you. Large code bases will benefit from more advanced
features such as pythonizations for a cleaner interface to clients; precompiled modules for faster parsing and reduced
memory usage; “dictionaries” to package locations and manage dependencies; and mapping files for automatic, lazy,
loading. You can, however, get very far with just the basics and it may even be completely sufficient for small packages
with fewer classes.

cppyy works by parsing C++ definitions through cling, generating tiny wrapper codes to honor compile-time fea-
tures and create standardized interfaces, then compiling/linking those wrappers with the clang JIT. It thus requires
only those two ingredients: C++ definitions and linker symbols. All cppyy uses, the basic and the more advanced, are
variations on the theme of bringing these two together at the point of use.

Definitions typically live in header files and symbols in libraries. Headers can be loaded with cppyy.include and
libraries with the cppyy.load_library call. Loading the header is sufficient to start exploring, with cppyy.gbl
the starting point of all things C++, while the linker symbols are only needed at the point of first use.

Here is an example using the zlib library, which is likely available on your system:

>>> import cppyy
>>> cppyy.include('zlib.h') # bring in C++ definitions
>>> cppyy.load_library('libz') # load linker symbols
>>> cppyy.gbl.zlibVersion() # use a zlib API
'1.2.11'
>>>

Since header files can include other header files, it is easy to aggregate all relevant ones into a single header to include.
If there are project-specific include paths, you can add those paths through cppyy.add_include_path. If a
header is C-only and not set for use with C++, use cppyy.c_include, which adds extern "C" around the
header.

Library files can be aggregated by linking all relevant ones to a single library to load. Using the linker for this purpose
allows regular system features such as rpath and envars such as LD_LIBRARY_PATH to be applied as usual. Note
that any mechanism that exposes the library symbols will work. For example, you could also use the standard module
ctypes through ctypes.CDLL with the ctypes.RTLD_GLOBAL option.

To explore, start from cppyy.gbl to access your namespaces, classes, functions, etc., etc. directly; or use python’s
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dir (or tab-completion) to see what is available. Use python’s help to see list the methods and data members of
classes and see the interfaces of functions.

Now try this out for some of your own headers, libraries, and APIs!
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CHAPTER 5

Example repos

The detailed feature lists have examples that work using a header file, and there is the tutorial that shows mixing of
C++ and Python interactively. The cookie cutter repo provides a good cmake based example. More complete examples
that show packaging include these repos (in alphabetical order):

• bgfx-python

• cppyy-bbhash

• dnpy

• PyEtaler

• pyflatsurf

• gco-cppyy

• gmpxxyy

• cppyy-knearestneighbors

• linear_algebra

• lyncs

• popsicle

• libsemigroups_cppyy

• SopraClient

• python-vspline
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CHAPTER 6

Bugs and feedback

Please report bugs, ask questions, request improvements, and post general comments on the issue tracker or on stack
overflow (marked with the “cppyy” tag).
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CHAPTER 7

Basic types

C++ has a far richer set of builtin types than Python. Most Python code can remain relatively agnostic to that, and
cppyy provides automatic conversions as appropriate. On the other hand, Python builtin types such as lists and maps
are far richer than any builtin types in C++. These are mapped to their Standard Template Library equivalents instead.

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded before running
any of the example code snippets. Download it, save it under the name features.h, and simply include it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

7.1 Builtins

The selection of builtin data types varies greatly between Python and C++. Where possible, builtin data types map
onto the expected equivalent Python types, with the caveats that there may be size differences, different precision or
rounding, etc. For example, a C++ float is returned as a Python float, which is in fact a C++ double. If sizes
allow, conversions are automatic. For example, a C++ unsigned int becomes a Python2 long or Python3 int,
but unsigned-ness is still honored:

>>> cppyy.gbl.gUint
0L
>>> type(cppyy.gbl.gUint)
<type 'long'>
>>> cppyy.gbl.gUint = -1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot convert negative integer to unsigned
>>>

On some platforms, 8-bit integer types such as int8_t and uint8_t are represented as char types. For consistency,
these are mapped onto Python int.
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Some types are builtin in Python, but (STL) classes in C++. Examples are str vs. std::string (see also the
Strings section) and complex vs. std::complex. These classes have been pythonized to behave the same wher-
ever possible. For example, string comparison work directly, and std::complex has real and imag properties:

>>> c = cppyy.gbl.std.complex['double'](1, 2)
>>> c
(1+2j)
>>> c.real, c.imag
(1.0, 2.0)
>>> s = cppyy.gbl.std.string("aap")
>>> type(s)
<class cppyy.gbl.std.string at 0x7fa75edbf8a0>
>>> s == "aap"
True
>>>

To pass an argument through a C++ char (signed or unsigned) use a Python string of size 1. In many cases, the explicit
C types from module ctypes can also be used, but that module does not have a public API (for type conversion or
otherwise), so support is somewhat limited.

There are automatic conversions between C++’s std::vector and Python’s list and tuple, where possible, as
they are often used in a similar manner. These datatypes have completely different memory layouts, however, and the
std::vector requires that all elements are of the same type and laid out consecutively in memory. Conversion thus
requires type checks, memory allocation, and copies. This can be rather expensive. See the section on STL.

7.2 Arrays

Builtin arrays are supported through arrays from module array (or any other builtin-type array that implements the
Python buffer interface, such as numpy arrays) and a low-level view type from cppyy for returns and variable access
(that implements the buffer interface as well). Out-of-bounds checking is limited to those cases where the size is
known at compile time. Example:

>>> from cppyy.gbl import Concrete
>>> from array import array
>>> c = Concrete()
>>> c.array_method(array('d', [1., 2., 3., 4.]), 4)
1 2 3 4
>>> c.m_data[4] # static size is 4, so out of bounds
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: buffer index out of range
>>>

Arrays of arrays are supported through the C++ low-level view objects. This only works well if sizes are known at
compile time or can be inferred. If sizes are not known, the size is set to a large integer (depending on the array
element size) to allow access. It is then up to the developer not to access the array out-of-bounds. There is limited
support for arrays of instances, but those should be avoided in C++ anyway:

>>> cppyy.cppdef('std::string str_array[3][2] = {{"aa", "bb"}, {"cc", "dd"},
→˓{"ee", "ff"}};')
True
>>> type(cppyy.gbl.str_array[0][1])
<class cppyy.gbl.std.string at 0x7fd650ccb650>
>>> cppyy.gbl.str_array[0][1]
'bb'

(continues on next page)
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(continued from previous page)

>>> cppyy.gbl.str_array[4][0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: tuple index out of range
>>>

7.3 Pointers

When the C++ code takes a pointer or reference type to a specific builtin type (such as an unsigned int for
example), then types need to match exactly. cppyy supports the types provided by the standard modules ctypes
and array for those cases. Example of using a reference to builtin:

>>> from ctypes import c_uint
>>> u = c_uint(0)
>>> c.uint_ref_assign(u, 42)
>>> u.value
42
>>>

For objects, an object, a pointer to an object, and a smart pointer to an object are represented the same way, with
the necessary (de)referencing applied automatically. Pointer variables are also bound by reference, so that updates on
either the C++ or Python side are reflected on the other side as well.

7.4 Enums

Named, anonymous, and class enums are supported. The Python-underlying type of an enum is implementation
dependent and may even be different for different enums on the same compiler. Typically, however, the types are int
or unsigned int, which translates to Python’s int or long on Python2 or class int on Python3. Separate from
the underlying, all enums have their own Python type to allow them to be used in template instantiations:

>>> from cppyy.gbl import kBanana # classic enum, globally available
>>> print(kBanana)
29
>>> cppyy.gbl.EFruit
<class '__main__.EFruit'>
>>> print(cppyy.gbl.EFruit.kApple)
78
>>> cppyy.gbl.E1 # C++11 class enum, scoped
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: <namespace cppyy.gbl at 0x7ff2766a4af0> has no attribute 'E1
→˓'.
>>> cppyy.gbl.NamedClassEnum.E1
42
>>>
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CHAPTER 8

Strings/Unicode

Both Python and C++ have core types to represent text and these are expected to be freely interchangeable. cppyy
makes it easy to do just that for the most common cases, while allowing customization where necessary to cover the
full range of diverse use cases (such as different codecs). In addition to these core types, there is a range of other
character types, from const char* and std::wstring to bytes, that see much less use, but are also fully
supported.

8.1 std::string

The C++ core type std::string is considered the equivalent of Python’s str, even as purely implementation-
wise, it is more akin to bytes: as a practical matter, a C++ programmer would use std::string where a Python
developer would use str (and vice versa), not bytes.

A Python str is unicode, however, whereas an std::string is character based, thus conversions require encoding
or decoding. To allow for different encodings, cppyy defers implicit conversions between the two types until forced,
at which point it will default to seeing std::string as ASCII based and str to use the UTF-8 codec. To support
this, the bound std::string has been pythonized to allow it to be a drop-in for a range of uses as appropriate
within the local context.

In particular, it is sometimes necessary (e.g. for function arguments that take a non-const reference or a pointer to
non-const std::string variables), to use an actual std::string instance to allow in-place modifications. The
pythonizations then allow their use where str is expected. For example:

>>> cppyy.cppexec("std::string gs;")
True
>>> cppyy.gbl.gs = "hello"
>>> type(cppyy.gbl.gs) # C++ std::string type
<class cppyy.gbl.std.string at 0x7fbb02a89880>
>>> d = {"hello": 42} # dict filled with str
>>> d[cppyy.gbl.gs] # drop-in use of std::string -> str
42
>>>
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To handle codecs other than UTF-8, the std::string pythonization adds a decode method, with the same signa-
ture as the equivalent method of bytes. If it is known that a specific C++ function always returns an std::string
representing unicode with a codec other than UTF-8, it can in turn be explicitly pythonized to do the conversion with
that codec.

8.2 std::wstring

C++’s “wide” string, std::wstring, is based on wchar_t, a character type that is not particularly portable as it
can be 2 or 4 bytes in size, depending on the platform. cppyy supports std::wstring directly, using the wchar_t
array conversions provided by Python’s C-API.

8.3 const char*

The C representation of text, const char*, is problematic for two reasons: it does not express ownership; and its
length is implicit, namely up to the first occurrence of '\0'. The first can, up to an extent, be ameliorated: there are
a range of cases where ownership can be inferred. In particular, if the C string is set from a Python str, it is the latter
that owns the memory and the bound proxy of the former that in turn owns the (unconverted) str instance. However,
if the const char*’s memory is allocated in C/C++, memory management is by necessity fully manual. Length,
on the other hand, can only be known in the case of a fixed array. However even then, the more common case is to use
the fixed array as a buffer, with the actual string still only extending up to the '\0' char, so that is assumed. (C++’s
std::string suffers from none of these issues and should always be preferred when you have a choice.)

8.4 char*

The C representation of a character array, char*, has all the problems of const char*, but in addition is often
used as “data array of 8-bit int”.

8.5 character types

cppyy directly supports the following character types, both as single variables and in array form: char, signed
char, unsigned char, wchar_t, char16_t, and char32_t.
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CHAPTER 9

Classes

Both Python and C++ support object-oriented code through classes and thus it is logical to expose C++ classes as
Python ones, including the full inheritance hierarchy.

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of
any session. Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

9.1 Basics

All bound C++ code starts off from the global C++ namespace, represented in Python by gbl. This namespace, as any
other namespace, is treated as a module after it has been loaded. Thus, we can import C++ classes that live underneath
it:

>>> from cppyy.gbl import Concrete
>>> Concrete
<class cppyy.gbl.Concrete at 0x2058e30>
>>>

Placing classes in the same structure as imposed by C++ guarantees identity, even if multiple Python modules bind the
same class. There is, however, no necessity to expose that structure to end-users: when developing a Python package
that exposes C++ classes through cppyy, consider cppyy.gbl an “internal” module, and expose the classes in any
structure you see fit. The C++ names will continue to follow the C++ structure, however, as is needed for e.g. pickling:

>>> from cppyy.gbl import Namespace
>>> Concrete == Namespace.Concrete
False
>>> n = Namespace.Concrete.NestedClass()
>>> type(n)

(continues on next page)
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(continued from previous page)

<class cppyy.gbl.Namespace.Concrete.NestedClass at 0x22114c0>
>>> type(n).__name__
NestedClass
>>> type(n).__module__
cppyy.gbl.Namespace.Concrete
>>> type(n).__cpp_name__
Namespace::Concrete::NestedClass
>>>

9.2 Constructors

Python and C++ both make a distinction between allocation (__new__ in Python, operator new in C++) and
initialization (__init__ in Python, the constructor call in C++). When binding, however, there comes a subtle
semantic difference: the Python __new__ allocates memory for the proxy object only, and __init__ initializes the
proxy by creating or binding the C++ object. Thus, no C++ memory is allocated until __init__. The advantages
are simple: the proxy can now check whether it is initialized, because the pointer to C++ memory will be NULL if
not; it can be a reference to another proxy holding the actual C++ memory; and it can now transparently implement a
C++ smart pointer. If __init__ is never called, eg. when a call to the base class __init__ is missing in a derived
class override, then accessing the proxy will result in a Python ReferenceError exception.

9.3 Destructors

There should not be a reason to call a destructor directly in CPython, but PyPy uses a garbage collector and that
makes it sometimes useful to destruct a C++ object where you want it destroyed. Destructors are accessible through
the conventional __destruct__ method. Accessing an object after it has been destroyed will result in a Python
ReferenceError exception.

9.4 Inheritance

The output of help shows the inheritance hierarchy, constructors, public methods, and public data. For example,
Concrete inherits from Abstract and it has a constructor that takes an int argument, with a default value of 42.
Consider:

>>> from cppyy.gbl import Abstract
>>> issubclass(Concrete, Abstract)
True
>>> a = Abstract()
Traceback (most recent call last):
File "<console>", line 1, in <module>

TypeError: cannot instantiate abstract class 'Abstract'
>>> c = Concrete()
>>> isinstance(c, Concrete)
True
>>> isinstance(c, Abstract)
True
>>> d = Concrete(13)
>>>
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Just like in C++, interface classes that define pure virtual methods, such as Abstract does, can not be instantiated,
but their concrete implementations can. As the output of help showed, the Concrete constructor takes an integer
argument, that by default is 42.

9.5 Cross-inheritance

Python classes that derive from C++ classes can override virtual methods as long as those methods are declared on
class instantiation (adding methods to the Python class after the fact will not provide overrides on the C++ side, only
on the Python side). Example:

>>> from cppyy.gbl import Abstract, call_abstract_method
>>> class PyConcrete(Abstract):
... def abstract_method(self):
... return "Hello, Python World!\n"
... def concrete_method(self):
... pass
...
>>> pc = PyConcrete()
>>> call_abstract_method(pc)
Hello, Python World!
>>>

Note that it is not necessary to provide a constructor (__init__), but if you do, you must call the base class con-
structor through the super mechanism.

9.6 Multiple cross-inheritance

Python requires that any multiple inheritance (also in pure Python) has an unambiguous method resolution order
(mro), including for classes and thus also for meta-classes. In Python2, it was possible to resolve any mro conflicts
automatically, but meta-classes in Python3, although syntactically richer, have functionally become far more limited.
In particular, the mro is checked in the builtin class builder, instead of in the meta-class of the meta-class (which in
Python3 is the builtin type rather than the meta-class itself as in Python2, another limitation, and which actually
checks the mro a second time for no reason). The upshot is that a helper is required (cppyy.multi) to resolve the
mro to support Python3. The helper is written to also work in Python2. Example:

>>> class PyConcrete(cppyy.multi(cppyy.gbl.Abstract1, cppyy.gbl.Abstract2)):
... def abstract_method1(self):
... return "first message"
... def abstract_method2(self):
... return "second message"
...
>>> pc = PyConcrete()
>>> cppyy.gbl.call_abstract_method1(pc)
first message
>>> cppyy.gbl/call_abstract_method2(pc)
second message
>>>

Contrary to multiple inheritance in Python, in C++ there are no two separate instances representing the base classes.
Thus, a single __init__ call needs to construct and initialize all bases, rather than calling __init__ on each base
independently. To support this syntax, the arguments to each base class should be grouped together in a tuple. If there
are no arguments, provide an empty tuple (or omit them altogether, if these arguments apply to the right-most base(s)).
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9.7 Methods

C++ methods are represented as Python ones: these are first-class objects and can be bound to an instance. If a method
is virtual in C++, the proper concrete method is called, whether or not the concrete class is bound. Similarly, if all
classes are bound, the normal Python rules apply:

>>> c.abstract_method()
called Concrete::abstract_method
>>> c.concrete_method()
called Concrete::concrete_method
>>> m = c.abstract_method
>>> m()
called Concrete::abstract_method
>>>

9.8 Data members

Data members are implemented as properties, using descriptors. For example, The Concrete instances have a public
data member m_int:

>>> c.m_int, d.m_int
(42, 13)
>>>

Note however, that the data members are typed: setting them results in a memory write on the C++ side. This is
different in Python, where references are replaced, and thus any type will do:

>>> c.m_int = 3.14 # a float does not fit in an int
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: int/long conversion expects an integer object
>>> c.m_int = int(3.14)
>>> c.m_int, d.m_int
(3, 13)
>>>

Private and protected data members are not accessible, contrary to Python data members, and C++ const-ness is
respected:

>>> c.m_const_int = 71 # declared 'const int' in class definition
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: assignment to const data not allowed
>>>

Static C++ data members act like Python class-level data members. They are also represented by property objects and
both read and write access behave as expected:

>>> Concrete.s_int # access through class
321
>>> c.s_int = 123 # access through instance
>>> Concrete.s_int
123
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9.9 Operators

Many C++ operators can be mapped to their Python equivalent. When the operators are part of the C++ class definition,
this is done directly. If they are defined globally, the lookup is done lazily (ie. can resolve after the class definition
by loading the global definition or by defining them interactively). Some operators have no Python equivalent and are
instead made available by mapping them onto the following conventional functions:

C++ Python
operator= __assign__
operator++(int) __postinc__
operator++() __preinc__
operator--(int) __postdec__
operator--() __predec__
unary operator* __deref__
operator-> __follow__
operator&& __dand__
operator|| __dor__
operator, __comma__

Here is an example of operator usage, using STL iterators directly (note that this is not necessary in practice as STL
and STL-like containers work transparently in Python for-loops):

>>> v = cppyy.gbl.std.vector[int](range(3))
>>> i = v.begin()
>>> while (i != v.end()):
... print(i.__deref__())
... _ = i.__preinc__()
...
0
1
2
>>>

Overridden operator new and operator delete, as well as their array equivalents, are not accessible but will
be called as appropriate.

9.10 Templates

Templated classes are instantiated using square brackets. (For backwards compatibility reasons, parentheses work as
well.) The instantiation of a templated class yields a class, which can then be used to create instances.

Templated classes need not pre-exist in the bound code, just their declaration needs to be available. This is true for
e.g. all of STL:

>>> cppyy.gbl.std.vector # template metatype
<cppyy.Template 'std::vector' object at 0x7fffed2674d0>
>>> cppyy.gbl.std.vector(int) # instantiates template -> class
<class cppyy.gbl.std.vector<int> at 0x1532190>
cppyy.gbl.std.vector[int]() # instantiates class -> object
<cppyy.gbl.std.vector<int> object at 0x2341ec0>
>>>
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The template arguments may be actual types or their names as a string, whichever is more convenient. Thus, the
following are equivalent:

>>> from cppyy.gbl.std import vector
>>> type1 = vector[Concrete]
>>> type2 = vector['Concrete']
>>> type1 == type2
True
>>>

9.11 Typedefs

Typedefs are simple python references to the actual classes to which they refer.

>>> from cppyy.gbl import Concrete_t
>>> Concrete is Concrete_t
True
>>>
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CHAPTER 10

Functions

C++ functions are first-class objects in Python and can be used wherever Python functions can be used, including for
dynamically constructing classes.

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of
any session. Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

Function argument type conversions follow the expected rules, with implicit conversions allowed, including between
Python builtin types and STL types, but it is rather more efficient to make conversions explicit.

10.1 Free functions

All bound C++ code starts off from the global C++ namespace, represented in Python by gbl. This namespace, as
any other namespace, is treated as a module after it has been loaded. Thus, we can directly import C++ functions from
it and other namespaces that themselves may contain more functions. All lookups on namespaces are done lazily, thus
if loading more headers bring in more functions (incl. new overloads), these become available dynamically.

>>> from cppyy.gbl import global_function, Namespace
>>> global_function == Namespace.global_function
False
>>> from cppyy.gbl.Namespace import global_function
>>> global_function == Namespace.global_function
True
>>> from cppyy.gbl import global_function
>>>

Free functions can be bound to a class, following the same rules as apply to Python functions: unless marked as static,
they will turn into member functions when bound to an instance, but act as static functions when called through the
class. Consider this example:
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>>> from cppyy.gbl import Concrete, call_abstract_method
>>> c = Concrete()
>>> Concrete.callit = call_abstract_method
>>> Concrete.callit(c)
called Concrete::abstract_method
>>> c.callit()
called Concrete::abstract_method
>>> Concrete.callit = staticmethod(call_abstract_method)
>>> c.callit()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: void ::call_abstract_method(Abstract* a) =>
TypeError: takes at least 1 arguments (0 given)

>>> c.callit(c)
called Concrete::abstract_method
>>>

10.2 Static methods

Class static functions are treated the same way as free functions, except that they are accessible either through the class
or through an instance, just like Python’s staticmethod.

10.3 Methods

For class methods, see the methods section under the classes heading.

10.4 Operators

Globally defined operators are found lazily (ie. can resolve after the class definition by loading the global definition
or by defining them interactively) and are mapped onto a Python equivalent when possible. See the operators section
under the classes heading for more details.

10.5 Templates

Templated functions (and class methods) can either be called using square brackets ([]) to provide the template
arguments explicitly, or called directly, through automatic lookup. The template arguments may either be a string of
type names (this results in faster code, as it needs no further lookup/verification) or a list of the actual types to use
(which tends to be more convenient).

Note: the Python type float maps to the C++ type float, even as Python uses a C double as its internal repre-
sentation. The motivation is that doing so makes the Python code more readable (and Python may anyway change its
internal representation in the future). The same has been true for Python int, which used to be a C long internally.

Examples, using multiply from features.h:

>>> mul = cppyy.gbl.multiply
>>> mul(1, 2)
2

(continues on next page)
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(continued from previous page)

>>> mul(1., 5)
5.0
>>> mul[int](1, 1)
1
>>> mul[int, int](1, 1)
1
>>> mul[int, int, float](1, 1)
1.0
>>> mul[int, int](1, 'a')
TypeError: Template method resolution failed:
none of the 6 overloaded methods succeeded. Full details:
int ::multiply(int a, int b) =>
TypeError: could not convert argument 2 (int/long conversion expects an

→˓integer object)
...
Failed to instantiate "multiply(int,std::string)"
>>> mul['double, double, double'](1., 5)
5.0
>>>

10.6 Overloading

C++ supports overloading, whereas Python supports “duck typing”, thus C++ overloads have to be selected dynami-
cally in response to the available “ducks”. This may lead to additional lookups or template instantiations. However,
pre-existing methods (incl. auto-instantiated methods) are always preferred over new template instantiations:

>>> global_function(1.) # selects 'double' overload
2.718281828459045
>>> global_function(1) # selects 'int' overload
42
>>>

C++ does a static dispatch at compile time based on the argument types. The dispatch is a selection among overloads
(incl. templates) visible at that point in the translation unit. Bound C++ in Python does a dynamic dispatch: it
considers all overloads visible globally at that point in the execution. Because the dispatch is fundamentally different
(albeit in line with the expectation of the respective languages), differences can occur. Especially if overloads live in
different header files and are only an implicit conversion apart, or if types that have no direct equivalent in Python,
such as e.g. unsigned short, are used.

There are two rounds to finding an overload. If all overloads fail argument conversion during the first round, where
implicit conversions are not allowed, _and_ at least one converter has indicated that it can do implicit conversions, a
second round is tried. In this second round, implicit conversions are allowed, including class instantiation of tempo-
raries. During some template calls, implicit conversions are not allowed at all, to make sure new instantiations happen
instead.

In the rare occasion where the automatic overload selection fails, the __overload__ function can be called to access
a specific overload matching a specific function signature:

>>> global_function.__overload__('double')(1) # int implicitly converted
2.718281828459045
>>>

An optional boolean second parameter can be used to restrict the selected method to be const (if True) or non-const
(if False).
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Note that __overload__ only does a lookup; it performs no (implicit) conversions and the types in the signature
to match should be the fully resolved ones (no typedefs). To see all available overloads, use help() or look at the
__doc__ string of the function:

>>> print(global_function.__doc__)
int ::global_function(int)
double ::global_function(double)
>>>

For convenience, the :any: signature, allows matching any signature, for example to reduce the general method to
the const (or non-const) overload only, use:

MyClass.some_method = MyClass.some_method.__overload__(':any:', True)

10.7 Return values

Most return types are readily amenable to automatic memory management: builtin returns, by-value returns, (const-
)reference returns to internal data, smart pointers, etc. The important exception is pointer returns.

A function that returns a pointer to an object over which Python should claim ownership, should have its
__creates__ flag set through its pythonization. Well-written APIs will have clear clues in their naming convention
about the ownership rules. For example, functions called New..., Clone..., etc. can be expected to return freshly
allocated objects. A simple name-matching in the pythonization then makes it simple to mark all these functions as
creators.

The return values are auto-casted.

10.8 *args and **kwds

C++ default arguments work as expected. Keywords, however, are a Python language feature that does not exist in
C++. Many C++ function declarations do have formal arguments, but these are not part of the C++ interface (the
argument names are repeated in the definition, making the names in the declaration irrelevant: they do not even need
to be provided). Thus, although cppyy will map keyword argument names to formal argument names from the C++
declaration, use of this feature is not recommended unless you have a guarantee that the names in C++ the interface
are maintained. Example:

>>> from cppyy.gbl import Concrete
>>> c = Concrete() # uses default argument
>>> c.m_int
42
>>> c = Concrete(13) # uses provided argument
>>> c.m_int
13
>>> args = (27,)
>>> c = Concrete(*args) # argument pack
>>> c.m_int
27
>>> c = Concrete(n=17)
>>> c.m_int
17
>>> kwds = {'n' : 18}
>>> c = Concrete(**kwds)
>>> c.m_int

(continues on next page)
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(continued from previous page)

18
>>>

10.9 Callbacks

Python callables (functions/lambdas/instances) can be passed to C++ through function pointers and/or
std::function. This involves creation of a temporary wrapper, which has the same life time as the Python
callable it wraps, so the callable needs to be kept alive on the Python side if the C++ side stores the callback. Example:

>>> from cppyy.gbl import call_int_int
>>> print(call_int_int.__doc__)
int ::call_int_int(int(*)(int,int) f, int i1, int i2)
>>> def add(a, b):
... return a+b
...
>>> call_int_int(add, 3, 7)
7
>>> call_int_int(lambda x, y: x*y, 3, 7)
21
>>>
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CHAPTER 11

Type conversions

Most type conversions are done automatically, e.g. between Python str and C++ std::string and const
char*, but low-level APIs exist to perform explicit conversions.

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of
any session. Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

11.1 Auto-casting

Object pointer returns from functions provide the most derived class known (i.e. exposed in header files) in the
hierarchy of the object being returned. This is important to preserve object identity as well as to make casting, a pure
C++ feature after all, superfluous. Example:

>>> from cppyy.gbl import Abstract, Concrete
>>> c = Concrete()
>>> Concrete.show_autocast.__doc__
'Abstract* Concrete::show_autocast()'
>>> d = c.show_autocast()
>>> type(d)
<class '__main__.Concrete'>
>>>

As a consequence, if your C++ classes should only be used through their interfaces, then no bindings should be
provided to the concrete classes (e.g. by excluding them using a selection file). Otherwise, more functionality will be
available in Python than in C++.

Sometimes, however, full control over a cast is needed. For example, if the instance is bound by another tool or even
a 3rd party, hand-written, extension library. Assuming the object supports the PyCapsule or CObject abstraction,
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then a C++-style reinterpret_cast (i.e. without implicitly taking offsets into account), can be done by taking and
rebinding the address of an object:

>>> from cppyy import addressof, bind_object
>>> e = bind_object(addressof(d), Abstract)
>>> type(e)
<class '__main__.Abstract'>
>>>

11.2 Operators

If conversion operators are defined in the C++ class and a Python equivalent exists (i.e. all builtin integer and floating
point types, as well as bool), then these will map onto those Python conversions. Note that char* is mapped onto
__str__. Example:

>>> from cppyy.gbl import Concrete
>>> print(Concrete())
Hello operator const char*!
>>>

C++ code can overload conversion operators by providing methods in a class or global functions. Special care needs
to be taken for the latter: first, make sure that they are actually available in some header file. Second, make sure that
headers are loaded in the desired order. I.e. that these global overloads are available before use.
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CHAPTER 12

STL

Parts of the Standard Template Library (STL), in particular its container types, are the de facto equivalent of Python’s
builtin types. STL is written in C++ and Python bindings of it are fully functional as-is, but are much more useful
when pluggable into idiomatic expressions where Python builtin containers are expected (e.g. in list contractions).

There are two extremes to achieve such drop-in behavior: copy into Python builtins, so that the Python-side always
deals with true Python objects; or adjust the C++ interfaces to be the same as their Python equivalents. Neither is very
satisfactory: the former is not because of the existence of global/static variables and return-by-reference. If only a copy
is available, then expected modifications do not propagate. Copying is also either slow (when copying every time) or
memory intensive (if the results are cached). Filling out the interfaces may look more appealing, but all operations
then involve C++ function calls, which can be slower than the Python equivalents, and C++-style error handling.

Given that neither choice will satisfy all cases, cppyy aims to maximize functionality and minimum surprises based
on common use. Thus, for example, std::vector grows a pythonistic __len__ method, but does not lose its
C++ size method. Passing a Python container through a const reference to a std::vector will trigger automatic
conversion, but such an attempt through a non-const reference will fail since a non-temporary C++ object is required1

to return any updates/changes.

std::string is almost always converted to Python’s str on function returns (the exception is return-by-reference
when assigning), but not when its direct use is more likely such as in the case of (global) variables or when iterating
over a std::vector<std::string>.

The rest of this section shows examples of how STL containers can be used in a natural, pythonistic, way.

12.1 vector

A std::vector is the most commonly used C++ container type because it is more efficient and performant than
specialized types such as list and map, unless the number of elements gets very large. Python has several similar
types, from the builtin tuple and list, the array from builtin module array, to “as-good-as-builtin” numpy.
ndarray. A vector is more like the latter two in that it can contain only one type, but more like the former two in that

1 The meaning of “temporary” differs between Python and C++: in a statement such as func(std.vector[int]((1, 2, 3))), there
is no temporary as far as Python is concerned, even as there clearly is in the case of a similar statement in C++. Thus that call will succeed even if
func takes a non-const reference.
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it can contain objects. In practice, it can interplay well with all these containers, but e.g. efficiency and performance
can differ significantly.

A vector can be instantiated from any sequence, including generators, and vectors of objects can be recursively con-
structed:

>>> from cppyy.gbl.std import vector, pair
>>> v = vector[int](range(10))
>>> len(v)
10
>>> vp = vector[pair[int, int]](((1, 2), (3, 4)))
>>> len(vp)
2
>>> vp[1][0]
3
>>>

To extend a vector in-place with another sequence object, use +=, just as would work for Python’s list:

>>> v += range(10, 20)
>>> len(v)
20
>>>

The easiest way to print the full contents of a vector, is by using a list and printing that instead. Indexing and slicing
of a vector follows the normal Python slicing rules:

>>> v[1]
1
>>> v[-1]
19
>>> v[-4:]
<cppyy.gbl.std.vector<int> object at 0x7f9051057650>
>>> list(v[-4:])
[16, 17, 18, 19]
>>>

The usual iteration operations work on vector, but the C++ rules still apply, so a vector that is being iterated over can
not be modified in the loop body. (On the plus side, this makes it much faster to iterate over a vector than, say, a numpy
ndarray.)

>>> for i in v[2:5]:
... print(i)
...
2
3
4
>>> 2 in v
True
>>> sum(v)
190
>>>

When a function takes a non-l-value (const-ref, move, or by-value) vector as a parameter, another sequence can be
used and cppyy will automatically generate a temporary. Typically, this will be faster than coding up such a temporary
on the Python side, but if the same sequence is used multiple times, creating a temporary once and re-using it will be
the most efficient approach.o
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>>> cppyy.cppdef("""
... int sumit1(const std::vector<int>& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }
... int sumit2(std::vector<int> data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }
... int sumit3(const std::vector<int>&& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }""")
...
True
>>> cppyy.gbl.sumit1(range(5))
10
>>> cppyy.gbl.sumit2(range(6))
16
>>> cppyy.gbl.sumit3(range(7))
21
>>>

The temporary vector is created using the vector constructor taking an std::initializer_list, which is more
flexible than constructing a temporary vector and filling it: it allows the data in the container to be implicitly con-
verted (e.g. from int to double type, or from pointer to derived to pointer to base class). As a consequence,
however, with STL containers being allowed where Python containers are, this in turn means that you can pass e.g. an
std::vector<int> (or std::list<int>) where a std::vector<double> is expected and a temporary
is allowed:

>>> cppyy.cppdef("""
... double sumit4(const std::vector<double>& data) {
... return std::accumulate(data.begin(), data.end(), 0);
... }""")
...
True
>>> cppyy.gbl.sumit4(vector[int](range(7)))
21.0
>>>

Normal overload resolution rules continue to apply, however, thus if an overload were available that takes an const
std::vector<int>&, it would be preferred.

When templates are involved, overload resolution is stricter, to ensure that a better matching instantiation is preferred
over an implicit conversion. However, that does mean that as-is, C++ is actually more flexible: it has the curly braces
initializer syntax to explicitly infer an std::initializer_list, with no such equivalent in Python.

Although in general this approach guarantees the intended result, it does put some strictures on the Python side,
requiring careful use of types. However, an easily fixable error is preferable over an implicitly wrong result. Note the
type of the init argument in the call resulting in an (attempted) implicit instantiation in the following example:

>>> cppyy.cppdef("""
... template<class T>
... T sumit_T(const std::vector<T>& data, T init) {
... return std::accumulate(data.begin(), data.end(), init);
... }""")
...
True
>>> cppyy.gbl.sumit_T(vector['double'](range(7)), 0)
Traceback (most recent call last):

(continues on next page)
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File "<stdin>", line 1, in <module>
TypeError: Template method resolution failed:
Failed to instantiate "sumit_T(std::vector<double>&,int)"
Failed to instantiate "sumit_T(std::vector<double>*,int)"
Failed to instantiate "sumit_T(std::vector<double>,int)"

>>> cppyy.gbl.sumit_T(vector['double'](range(7)), 0.)
21.0
>>>

To be sure, the code is too strict in the simplistic example above, and with a future version of Cling it should be
possible to lift some of these restrictions without causing incorrect results.
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CHAPTER 13

Exceptions

All C++ exceptions are converted to Python exceptions and all Python exceptions are converted to C++ exceptions, to
allow exception propagation through multiple levels of callbacks, while retaining the option to handle the outstanding
exception as needed in either language. To preserve an exception across the language boundaries, it must derive from
std::exception. If preserving the exception (or its type) is not possible, generic exceptions are used to propagate
the exception: Exception in Python or CPyCppyy::PyException in C++.

In the most common case of an instance of a C++ exception class derived from std::exception that is thrown
from a compiled library and which is copyable, the exception can be caught and handled like any other bound C++
object (or with Exception on the Python and std::exception on the C++ side). If the exception is not copyable,
but derived from std::exception, the result of its what() reported with an instance of Python’s Exception. In
all other cases, including exceptions thrown from interpreted code (due to limitations of the Clang JIT), the exception
will turn into an instance of Exception with a generic message.

The standard C++ exceptions are explicitly not mapped onto standard Python exceptions, since other than a few
simple cases, the mapping is too crude to be useful as the typical usage in each standard library is too different. Thus,
for example, a thrown std::runtime_error instance will become a cppyy.gbl.std.runtime_error
instance on the Python side (with Python’s Exception as its base class), not a RuntimeError instance.

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of
any session. Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

In addition, the examples require the throw to be in compiled code. Save the following and build it into a shared
library libfeatures.so (or libfeatures.dll on MS Windows):

#include "features.h"

void throw_an_error(int i) {
if (i) throw SomeError{"this is an error"};
throw SomeOtherError{"this is another error"};

}
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And load the resulting library:

>>> cppyy.load_library('libfeatures')
>>>

Then try it out:

>>> cppyy.gbl.throw_an_error(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

cppyy.gbl.SomeError: void ::throw_an_error(int i) =>
SomeError: this is an error

>>>

Note how the full type is preserved and how the result of what() is used for printing the exception. By preserving
the full C++ type, it is possible to call any other member functions the exception may provide beyond what or access
any additional data it carries.

To catch the exception, you can either use the full type, or any of its base classes, including Exception and cppyy.
gbl.std.exception:

>>> try:
... cppyy.gbl.throw_an_error(0)
... except cppyy.gbl.SomeOtherError as e: # catch by exact type
... print("received:", e)
...
received: <cppyy.gbl.SomeOtherError object at 0x7f9e11d3db10>
>>> try:
... cppyy.gbl.throw_an_error(0)
... except Exception as e: # catch through base class
... print("received:", e)
...
received: <cppyy.gbl.SomeOtherError object at 0x7f9e11e00310>
>>>
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CHAPTER 14

Python

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of
any session. Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

14.1 PyObject

Arguments and return types of PyObject* can be used, and passed on to CPython API calls (or through cpyext in
PyPy).

14.2 Doc strings

The documentation string of a method or function contains the C++ arguments and return types of all overloads of that
name, as applicable. Example:

>>> from cppyy.gbl import Concrete
>>> print Concrete.array_method.__doc__
void Concrete::array_method(int* ad, int size)
void Concrete::array_method(double* ad, int size)
>>>

14.3 Help

Bound C++ class is first-class Python and can thus be inspected like any Python objects can. For example, we can ask
for help():
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>>> help(Concrete)
Help on class Concrete in module gbl:

class Concrete(Abstract)
| Method resolution order:
| Concrete
| Abstract
| CPPInstance
| __builtin__.object
|
| Methods defined here:
|
| __assign__(self, const Concrete&)
| Concrete& Concrete::operator=(const Concrete&)
|
| __init__(self, *args)
| Concrete::Concrete(int n = 42)
| Concrete::Concrete(const Concrete&)
|
etc. ....
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CHAPTER 15

Low-level code

C code and older C++ code sometimes makes use of low-level features such as pointers to builtin types, some of which
do not have any Python equivalent (e.g. unsigned short*). Furthermore, such codes tend to be ambiguous: the
information from header file is not sufficient to determine the full purpose. For example, an int* type may refer
to the address of a single int (an out-parameter, say) or it may refer to an array of int, the ownership of which is
not clear either. cppyy provides a few low-level helpers and integration with the Python ctypes module to cover these
cases.

Use of these low-level helpers will obviously lead to very “C-like” code and it is recommended to pythonize the code,
perhaps using the Cling JIT and embedded C++.

Note: the low-level module is not loaded by default (since its use is, or should be, uncommon). It needs to be imported
explicitly:

>>> import cppyy.ll
>>>

15.1 C/C++ casts

C++ instances are auto-casted to the most derived available type, so do not require explicit casts even when a function
returns a pointer to a base class or interface. However, when given only a void* or intptr_t type on return, a cast
is required to turn it into something usable.

• bind_object: This is the preferred method to proxy a C++ address, and lives in cppyy, not cppyy.ll, as it
is not a low-level C++ cast, but a cppyy API that is also used internally. It thus plays well with object identity,
references, etc. Example:

>>> cppyy.cppdef("""
... struct MyStruct { int fInt; };
... void* create_mystruct() { return new MyStruct{42}; }
... """)
...
>>> s = cppyy.gbl.create_mystruct()

(continues on next page)
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(continued from previous page)

>>> print(s)
<cppyy.LowLevelView object at 0x10559d430>
>>> sobj = cppyy.bind_object(s, 'MyStruct')
>>> print(sobj)
<cppyy.gbl.MyStruct object at 0x7ff25e28eb20>
>>> print(sobj.fInt)
42
>>>

Instead of the type name as a string, bind_object can also take the actual class (here: cppyy.gbl.
MyStruct).

• Typed nullptr: A Python side proxy can pass through a pointer to pointer function argument, but if the C++
side allocates memory and stores it in the pointer, the result is a memory leak. In that case, use bind_object
to bind cppyy.nullptr instead, to get a typed nullptr to pass to the function. Example (continuing from the
example above):

>>> cppyy.cppdef("""
... void create_mystruct(MyStruct** ptr) { *ptr = new MyStruct{42}; }
... """)
...
>>> s = cppyy.bind_object(cppyy.nullptr, 'MyStruct')
>>> print(s)
<cppyy.gbl.MyStruct object at 0x0>
>>> cppyy.gbl.create_mystruct(s)
>>> print(s)
<cppyy.gbl.MyStruct object at 0x7fc7d85b91c0>
>>> print(s.fInt)
42
>>>

• C-style cast: This is the simplest option for builtin types. The syntax is “template-style”, example:

>>> cppyy.cppdef("""
... void* get_data(int sz) {
... int* iptr = (int*)malloc(sizeof(int)*sz);
... for (int i=0; i<sz; ++i) iptr[i] = i;
... return iptr;
... }""")
...
>>> NDATA = 4
>>> d = cppyy.gbl.get_data(NDATA)
>>> print(d)
<cppyy.LowLevelView object at 0x1068cba30>
>>> d = cppyy.ll.cast['int*'](d)
>>> d.reshape((NDATA,))
>>> print(list(d))
[0, 1, 2, 3]
>>>

• C++-style casts: Similar to the C-style cast, there are ll.static_cast and ll.reinterpret_cast.
There should never be a reason for a dynamic_cast, since that only applies to objects, for which auto-casting
will work. The syntax is “template-style”, just like for the C-style cast above.
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15.2 NumPy casts

The cppyy.LowLevelView type returned for pointers to basic types, including for void*, is a simple and light-
weight view on memory, given a pointer, type, and number of elements (or unchecked, if unknown). It only supports
basic operations such as indexing and iterations, but also the buffer protocol for integration with full-fledged functional
arrays such as NumPy‘s ndarray.

In addition, specifically when dealing with void* returns, you can use NumPy’s low-level frombuffer interface
to perform the cast. Example:

>>> cppyy.cppdef("""
... void* create_float_array(int sz) {
... float* pf = (float*)malloc(sizeof(float)*sz);
... for (int i = 0; i < sz; ++i) pf[i] = 2*i;
... return pf;
... }""")
...
>>> import numpy as np
>>> NDATA = 8
>>> arr = cppyy.gbl.create_float_array(NDATA)
>>> print(arr)
<cppyy.LowLevelView object at 0x109f15230>
>>> arr.reshape((NDATA,)) # adjust the llv's size
>>> v = np.frombuffer(arr, dtype=np.float32, count=NDATA) # cast to float
>>> print(len(v))
8
>>> print(v)
array([ 0., 2., 4., 6., 8., 10., 12., 14.], dtype=float32)
>>>

Note that NumPy will internally check the total buffer size, so if the size you are casting to is larger than the size you
are casting from, then the number of elements set in the reshape call needs to be adjusted accordingly.

15.3 Capsules

It is not possible to pass proxies from cppyy through function arguments of another binder (and vice versa, with the
exception of ctypes, see below), because each will use a different internal representation, including for type checking
and extracting the C++ object address. However, all Python binders are able to rebind (just like bind_object above
for cppyy) the result of at least one of the following:

• ll.addressof: Takes a cppyy bound C++ object and returns its address as an integer value. Takes an optional
byref parameter and if set to true, returns a pointer to the address instead.

• ll.as_capsule: Takes a cppyy bound C++ object and returns its address as a PyCapsule object. Takes an optional
byref parameter and if set to true, returns a pointer to the address instead.

• ll.as_cobject: Takes a cppyy bound C++ object and returns its address as a PyCObject object for Python2 and
a PyCapsule object for Python3. Takes an optional byref parameter and if set to true, returns a pointer to the
address instead.

• ll.as_ctypes: Takes a cppyy bound C++ object and returns its address as a ctypes.c_void_p object. Takes
an optional byref parameter and if set to true, returns a pointer to the address instead.
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15.4 ctypes

The ctypes module has been part of Python since version 2.5 and provides a Python-side foreign function interface.
It is clunky to use and has very bad performance, but it is guaranteed to be available. It does not have a public C
interface, only the Python one, but its internals have been stable since its introduction, making it safe to use for tight
and efficient integration at the C level (with a few Python helpers to assure lazy lookup).

Objects from ctypes can be passed through arguments of functions that take a pointer to a single C++ builtin, and
ctypes pointers can be passed when a pointer-to-pointer is expected, e.g. for array out-parameters. This leads to the
following set of possible mappings:

C++ ctypes
by value (ex.: int) .value (ex.: c_int(0).value)
by const reference (ex.: const int&) .value (ex.: c_int(0).value)
by reference (ex.: int&) direct (ex.: c_int(0))
by pointer (ex.: int*) direct (ex.: c_int(0))
by ptr-ref (ex.: int*&) pointer (ex.: pointer(c_int(0)))
by ptr-ptr in (ex.: int**) pointer (ex.: pointer(c_int(0)))
by ptr-ptr out (ex.: int**) POINTER (ex.: POINTER(c_int)())

The ctypes pointer objects (from POINTER, pointer, or byref) can also be used for pass by reference or
pointer, instead of the direct object, and ctypes.c_void_p can pass through all pointer types. The addresses will
be adjusted internally by cppyy.

Note that ctypes.c_char_p is expected to be a NULL-terminated C string, not a character array (see the ctypes
module documentation), and that ctypes.c_bool is a C _Bool type, not C++ bool.

15.5 Memory

C++ has three ways of allocating heap memory (malloc, new, and new[]) and three corresponding ways of deal-
location (free, delete, and delete[]). Direct use of malloc and new should be avoided for C++ classes,
as these may override operator new to control their allocation own. However these low-level allocators can be
necessary for builtin types on occassion if the C++ side takes ownership (otherwise, prefer either array from the
builtin module array or ndarray from Numpy).

The low-level module adds the following functions:

• ll.malloc: an interface on top of C’s malloc. Use it as a template with the number of elements (not the number
types) to be allocated. The result is a cppyy.LowLevelView with the proper type and size:

>>> arr = cppyy.ll.malloc[int](4) # allocates memory for 4 C ints
>>> print(len(arr))
4
>>> print(type(arr[0]))
<type 'int'>
>>>

The actual C malloc can also be used directly, through cppyy.gbl.malloc, taking the number of bytes to
be allocated and returning a void*.

• ll.free: an interface to C’s free, to deallocate memory allocated by C’s malloc. To continue to example above:

>>> cppyy.ll.free(arr)
>>>
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The actual C free can also be used directly, through cppyy.gbl.free.

• ll.array_new: an interface on top of C++’s new[]. Use it as a template; the result is a cppyy.
LowLevelView with the proper type and size:

>>> arr = cppyy.ll.array_new[int](4) # allocates memory for 4 C ints
>>> print(len(arr))
4
>>> print(type(arr[0]))
<type 'int'>
>>>

• ll.array_delete: an interface on top of C++’s delete[]. To continue to example above:

>>> cppyy.ll.array_delete(arr)
>>>
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Miscellaneous

16.1 File features.h

1 #include <cmath>
2 #include <iostream>
3 #include <vector>
4

5

6 //-----
7 unsigned int gUint = 0;
8

9 //-----
10 class Abstract {
11 public:
12 virtual ~Abstract() {}
13 virtual void abstract_method() = 0;
14 virtual void concrete_method() = 0;
15 };
16

17 void Abstract::concrete_method() {
18 std::cout << "called Abstract::concrete_method" << std::endl;
19 }
20

21 //-----
22 class Concrete : Abstract {
23 public:
24 Concrete(int n=42) : m_int(n), m_const_int(17) {}
25 ~Concrete() {}
26

27 virtual void abstract_method() {
28 std::cout << "called Concrete::abstract_method" << std::endl;
29 }
30

31 virtual void concrete_method() {

(continues on next page)
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(continued from previous page)

32 std::cout << "called Concrete::concrete_method" << std::endl;
33 }
34

35 void array_method(int* ad, int size) {
36 for (int i=0; i < size; ++i)
37 std::cout << ad[i] << ' ';
38 std::cout << '\n';
39 }
40

41 void array_method(double* ad, int size) {
42 for (int i=0; i < size; ++i)
43 std::cout << ad[i] << ' ';
44 std::cout << '\n';
45 }
46

47 void uint_ref_assign(unsigned int& target, unsigned int value) {
48 target = value;
49 }
50

51 Abstract* show_autocast() {
52 return this;
53 }
54

55 operator const char*() {
56 return "Hello operator const char*!";
57 }
58

59 public:
60 double m_data[4];
61 int m_int;
62 const int m_const_int;
63

64 static int s_int;
65 };
66

67 typedef Concrete Concrete_t;
68

69 int Concrete::s_int = 321;
70

71 void call_abstract_method(Abstract* a) {
72 a->abstract_method();
73 }
74

75 //-----
76 class Abstract1 {
77 public:
78 virtual ~Abstract1() {}
79 virtual std::string abstract_method1() = 0;
80 };
81

82 class Abstract2 {
83 public:
84 virtual ~Abstract2() {}
85 virtual std::string abstract_method2() = 0;
86 };
87

88 std::string call_abstract_method1(Abstract1* a) {
(continues on next page)
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89 return a->abstract_method1();
90 }
91

92 std::string call_abstract_method2(Abstract2* a) {
93 return a->abstract_method2();
94 }
95

96 //-----
97 int global_function(int) {
98 return 42;
99 }

100

101 double global_function(double) {
102 return std::exp(1);
103 }
104

105 int call_int_int(int (*f)(int, int), int i1, int i2) {
106 return f(i1, i2);
107 }
108

109 template<class A, class B, class C = A>
110 C multiply(A a, B b) {
111 return C{a*b};
112 }
113

114 //-----
115 namespace Namespace {
116

117 class Concrete {
118 public:
119 class NestedClass {
120 public:
121 std::vector<int> m_v;
122 };
123

124 };
125

126 int global_function(int i) {
127 return 2*::global_function(i);
128 }
129

130 double global_function(double d) {
131 return 2*::global_function(d);
132 }
133

134 } // namespace Namespace
135

136 //-----
137 enum EFruit {kApple=78, kBanana=29, kCitrus=34};
138 enum class NamedClassEnum { E1 = 42 };
139

140 //-----
141 void throw_an_error(int i);
142

143 class SomeError : public std::exception {
144 public:
145 explicit SomeError(const std::string& msg) : fMsg(msg) {}

(continues on next page)
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146 const char* what() const throw() override { return fMsg.c_str(); }
147

148 private:
149 std::string fMsg;
150 };
151

152 class SomeOtherError : public SomeError {
153 public:
154 explicit SomeOtherError(const std::string& msg) : SomeError(msg) {}
155 SomeOtherError(const SomeOtherError& s) : SomeError(s) {}
156 };

This is a collection of a few more features listed that do not have a proper place yet in the rest of the documentation.

The C++ code used for the examples below can be found here, and it is assumed that that code is loaded at the start of
any session. Download it, save it under the name features.h, and load it:

>>> import cppyy
>>> cppyy.include('features.h')
>>>

16.2 Special variables

There are several conventional “special variables” that control behavior of functions or provide (internal) information.
Often, these can be set/used in pythonizations to handle memory management or Global Interpreter Lock (GIL) release.

• __python_owns__: a flag that every bound instance carries and determines whether Python or C++ owns the
C++ instance (and associated memory). If Python owns the instance, it will be destructed when the last Python
reference to the proxy disappears. You can check/change the ownership with the __python_owns__ flag that
every bound instance carries. Example:

>>> from cppyy.gbl import Concrete
>>> c = Concrete()
>>> c.__python_owns__ # True: object created in Python
True
>>>

• __creates__: a flag that every C++ overload carries and determines whether the return value is owned by
C++ or Python: if True, Python owns the return value, otherwise C++.

• __set_lifeline__: a flag that every C++ overload carries and determines whether the return value should
place a back-reference on self, to prevent the latter from going out of scope before the return value does. The
default is False, but will be automatically set at run-time if a return value’s address is a C++ object pointing
into the memory of this, or if self is a by-value return.

• __release_gil__: a flag that every C++ overload carries and determines whether the Global Interpreter
Lock (GIL) should be released during the C++ call to allow multi-threading. The default is False.

• __useffi__: a flag that every C++ overload carries and determines whether generated wrappers or direct
foreign functions should be used. This is for PyPy only; the flag has no effect on CPython.

• __sig2exc__: a flag that every C++ overload carries and determines whether C++ signals (such as SIGA-
BRT) should be converted into Python exceptions.

• __cppname__: a string that every C++ bound class carries and contains the actual C++ name (as opposed to
__name__ which has the Python name). This can be useful for template instantiations, documentation, etc.
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16.3 STL algorithms

It is usually easier to use a Python equivalent or code up the effect of an STL algorithm directly, but when operating
on a large container, calling an STL algorithm may offer better performance. It is important to note that all STL
algorithms are templates and need the correct types to be properly instantiated. STL containers offer typedefs to
obtain those exact types and these should be used rather than relying on the usual implicit conversions of Python types
to C++ ones. For example, as there is no char type in Python, the std::remove call below can not be instantiated
using a Python string, but the std::string::value_type must be used instead:

>>> cppstr = cppyy.gbl.std.string
>>> n = cppstr('this is a C++ string')
>>> print(n)
this is a C++ string
>>> n.erase(cppyy.gbl.std.remove(n.begin(), n.end(), cppstr.value_type(' ')))
<cppyy.gbl.__wrap_iter<char*> object at 0x7fba35d1af50>
>>> print(n)
thisisaC++stringing
>>>

16.4 Reduced typing

Typing cppyy.gbl all the time gets old rather quickly, but the dynamic nature of cppyy makes something like
from cppyy.gbl import * impossible. For example, classes can be defined dynamically after that statement
and then they would be missed by the import. In scripts, it is easy enough to rebind names to achieve a good amount
of reduction in typing (and a modest performance improvement to boot, because of fewer dictionary lookups), e.g.:

import cppyy
std = cppyy.gbl.std
v = std.vector[int](range(10))

But even such rebinding becomes annoying for (brief) interactive sessions.

For CPython only (and not with tools such as IPython or in IDEs that replace the interactive prompt), there is a
fix, using from cppyy.interactive import *. This makes lookups in the global dictionary of the current
frame also consider everything under cppyy.gbl. This feature comes with a performance penalty and is not meant
for production code. Example usage:

>>> from cppyy.interactive import *
>>> v = std.vector[int](range(10))
>>> print(list(v))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>
>>> cppdef("struct SomeStruct {};")
True
>>> s = SomeStruct() # <- dynamically made available
>>> s
<cppyy.gbl.SomeStruct object at 0x7fa9b8624320>
>>>

For PyPy, IPython, etc. cppyy.gbl is simply rebound as g and cppyy.gbl.std is made available as std. Not
as convenient as full lookup, and missing any other namespaces that may be available, but still saves some typing in
may cases.
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16.5 Odds and ends

• namespaces: Are represented as python classes. Namespaces are more open-ended than classes, so sometimes
initial access may result in updates as data and functions are looked up and constructed lazily. Thus the result of
dir() on a namespace shows the classes and functions available for binding, even if these may not have been
created yet. Once created, namespaces are registered as modules, to allow importing from them. The global
namespace is cppyy.gbl.

• NULL: Is represented as cppyy.nullptr. Starting C++11, the keyword nullptr is used to represent
NULL. For clarity of intent, it is recommended to use this instead of None (or the integer 0, which can serve in
some cases), as None is better understood as void in C++.
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Debugging

By default, the clang JIT as used by cppyy does not generate debugging information. This is first of all because it
has proven to be not reliable in all cases, but also because in a production setting this information, being internal to the
wrapper generation, goes unused. However, that does mean that a debugger that starts from python will not be able to
step through JITed code into the C++ function that needs debugging, even when such information is available for that
C++ function.

To enable debugging information in JITed code, set the EXTRA_CLING_ARGS envar to -g (and any further compiler
options you need, e.g. add -O2 to debug optimized code).

On a crash in C++, the backend will attempt to provide a stack trace. This works quite well on Linux (through gdb)
and decently on MacOS (through unwind), but is currently unreliable on MS Windows. To prevent printing of this
trace, which can be slow to produce, set the envar CPPYY_CRASH_QUIET to ‘1’.

It is even more useful to obtain a traceback through the Python code that led up to the problem in C++. Many
modern debuggers allow mixed-mode C++/Python debugging (for example gdb and MSVC), but cppyy can also turn
abortive C++ signals (such as a segmentation violation) into Python exceptions, yielding a normal traceback. This is
particularly useful when working with cross-inheritance and other cross-language callbacks.

To enable the signals to exceptions conversion, import the lowlevel module cppyy.ll and use:

import cppyy.ll
cppyy.ll.set_signals_as_exception(True)

Call set_signals_as_exception(False) to disable the conversion again. It is recommended to only have
the conversion enabled around the problematic code, as it comes with a performance penalty. If the problem can be
localized to a specific function, you can use its __sig2exc__ flag to only have the conversion active in that function.
Finally, for convenient scoping, you can also use:

with cppyy.ll.signals_as_exception():
# crashing code goes here

The translation of signals to exceptions is as follows (all of the exceptions are subclasses of cppyy.ll.
FatalError):
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C++ signal Python exception
SIGSEGV cppyy.ll.SegmentationViolation
SIGBUS cppyy.ll.BusError
SIGABRT cppyy.ll.AbortSignal
SIGILL cppyy.ll.IllegalInstruction

As an example, consider the following cross-inheritance code that crashes with a segmentation violation in C++,
because a nullptr is dereferenced:

import cppyy
import cppyy.ll

cppyy.cppdef("""
class Base {
public:

virtual ~Base() {}
virtual int runit() = 0;

};

int callback(Base* b) {
return b->runit();

}

void segfault(int* i) { *i = 42; }
""")

class Derived(cppyy.gbl.Base):
def runit(self):

print("Hi, from Python!")
cppyy.gbl.segfault(cppyy.nullptr)

If now used with signals_as_exception, e.g. like so:

d = Derived()
with cppyy.ll.signals_as_exception():

cppyy.gbl.callback(d)

it produces the following, very informative, Python-side trace:

Traceback (most recent call last):
File "crashit.py", line 25, in <module>
cppyy.gbl.callback(d)

cppyy.ll.SegmentationViolation: int ::callback(Base* b) =>
SegmentationViolation: void ::segfault(int* i) =>
SegmentationViolation: segfault in C++; program state was reset

whereas without, there would be no Python-side information at all.
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Pythonizations

Automatic bindings generation mostly gets the job done, but unless a C++ library was designed with expressiveness
and interactivity in mind, using it will feel stilted. Thus, if you are not the end-user of a set of bindings, it is beneficial
to implement pythonizations. Some of these are already provided by default, e.g. for STL containers. Consider the
following code, iterating over an STL map, using naked bindings (i.e. “the C++ way”):

>>> from cppyy.gbl import std
>>> m = std.map[int, int]()
>>> for i in range(10):
... m[i] = i*2
...
>>> b = m.begin()
>>> while b != m.end():
... print(b.__deref__().second, end=' ')
... b.__preinc__()
...
0 2 4 6 8 10 12 14 16 18
>>>

Yes, that is perfectly functional, but it is also very clunky. Contrast this to the (automatic) pythonization:

>>> for key, value in m:
... print(value, end=' ')
...
0 2 4 6 8 10 12 14 16 18
>>>

Such a pythonization can be written completely in Python using the bound C++ methods, with no intermediate lan-
guage necessary. Since it is written on abstract features, there is also only one such pythonization that works for all
STL map instantiations.
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18.1 Python callbacks

Since bound C++ entities are fully functional Python ones, pythonization can be done explicitly in an end-user facing
Python module. However, that would prevent lazy installation of pythonizations, so instead a callback mechanism is
provided.

A callback is a function or callable object taking two arguments: the Python proxy class to be pythonized and its
C++ name. The latter is provided to allow easy filtering. This callback is then installed through cppyy.py.
add_pythonization and ideally only for the relevant namespace (installing callbacks for classes in the global
namespace is supported, but beware of name clashes).

Pythonization is most effective of well-structured C++ libraries that have idiomatic behaviors. It is then straightforward
to use Python reflection to write rules. For example, consider this callback that looks for the conventional C++ function
GetLength and replaces it with Python’s __len__:

import cppyy

def replace_getlength(klass, name):
try:

klass.__len__ = klass.__dict__['GetLength']
except KeyError:

pass

cppyy.py.add_pythonization(replace_getlength, 'MyNamespace')

cppyy.cppdef("""
namespace MyNamespace {
class MyClass {
public:

MyClass(int i) : fInt(i) {}
int GetLength() { return fInt; }

private:
int fInt;

};
}""")

m = cppyy.gbl.MyNamespace.MyClass(42)
assert len(m) == 42

18.2 C++ callbacks

If you are familiar with the Python C-API, it may sometimes be beneficial to add unique optimizations to your C++
classes to be picked up by the pythonization layer. There are two conventional function that cppyy will look for (no
registration of callbacks needed):

static void __cppyy_explicit_pythonize__(PyObject* klass, const std::string&);

which is called only for the class that declares it. And:

static void __cppyy_pythonize__(PyObject* klass, const std::string&);

which is also called for all derived classes.

Just as with the Python callbacks, the first argument will be the Python class proxy, the second the C++ name, for easy
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filtering. When called, cppyy will be completely finished with the class proxy, so any and all changes, including such
low-level ones such as the replacement of iteration or buffer protocols, are fair game.
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CHAPTER 19

Utilities

The cppyy-backend package brings in the following utilities to help with repackaging and redistribution:

• cling-config: for compile time flags

• rootcling and genreflex: for dictionary generation

• cppyy-generator: part of the CMake interface

19.1 Compiler/linker flags

cling-config is a small utility to provide access to the as-installed configuration, such as compiler/linker flags
and installation directories, of other components. Usage examples:

$ cling-config --help
Usage: cling-config [--cflags] [--cppflags] [--cmake]
$ cling-config --cmake
/usr/local/lib/python2.7/dist-packages/cppyy_backend/cmake

19.2 Dictionaries

Loading header files or code directly into cling is fine for interactive work and smaller packages, but large scale
applications benefit from pre-compiling code, using the automatic class loader, and packaging dependencies in so-
called “dictionaries.”

A dictionary is a generated C++ source file containing references to the header locations used when building (and any
additional locations provided), a set of forward declarations to reduce the need of loading header files, and a few I/O
helper functions. The name “dictionary” is historic: before cling was used, it contained the complete generated C++
reflection information, whereas now that is derived at run-time from the header files. It is still possible to fully embed
header files rather than only storing their names and search locations, to make the dictionary more self-contained.
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After generating the dictionary, it should be compiled into a shared library. This provides additional dependency
control: by linking it directly with any further libraries needed, you can use standard mechanisms such as rpath to
locate those library dependencies. Alternatively, you can add the additional libraries to load to the mapping files of the
class loader (see below).

Note: The JIT needs to resolve linker symbols in order to call them through generated wrappers. Thus, any classes,
functions, and data that will be used in Python need to be exported. This is the default behavior on Mac and Linux, but
not on Windows. On that platform, use __declspec(dllexport) to explicitly export the classes and function
you expect to call. CMake has simple support for exporting all C++ symbols.

In tandem with any dictionary, a pre-compiled module (.pcm) file will be generated. C++ modules are still on track for
inclusion in the C++20 standard and most modern C++ compilers, clang among them, already have implementations.
The benefits for cppyy include faster bindings generation, lower memory footprint, and isolation from preprocessor
macros and compiler flags. The use of modules is transparent, other than the requirement that they need to be co-
located with the compiled dictionary shared library.

Optionally, the dictionary generation process also produces a mapping file, which lists the libraries needed to load
C++ classes on request (for details, see the section on the class loader below).

Structurally, you could have a single dictionary for a project as a whole, but more likely a large project will have a
pre-existing functional decomposition that can be followed, with a dictionary per functional unit.

19.2.1 Generation

There are two interfaces onto the same underlying dictionary generator: rootcling and genreflex. The reason
for having two is historic and they are not complete duplicates, so one or the other may suit your preference better. It
is foreseen that both will be replaced once C++ modules become more mainstream, as that will allow simplification
and improved robustness.

rootcling

The first interface is called rootcling:

$ rootcling
Usage: rootcling [-v][-v0-4] [-f] [out.cxx] [opts] file1.h[+][-][!] file2.h[+][-][!] .
→˓..[Linkdef.h]
For more extensive help type: /usr/local/lib/python2.7/dist-packages/cppyy_backend/
→˓bin/rootcling -h

Rather than providing command line options, the main steering of rootcling behavior is done through #pragmas
in a Linkdef.h file, with most pragmas dedicated to selecting/excluding (parts of) classes and functions. Additionally,
the Linkdef.h file may contain preprocessor macros.

The output consists of a dictionary file (to be compiled into a shared library), a C++ module, and an optional mapping
file, as described above.

genreflex

The second interface is called genreflex:
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$ genreflex
Generates dictionary sources and related ROOT pcm starting from an header.
Usage: genreflex headerfile.h [opts] [preproc. opts]
...

genreflex has a richer command line interface than rootcling as can be seen from the full help message.

Selection/exclusion is driven through a selection file using an XML format that allows both exact and pattern matching
to namespace, class, enum, function, and variable names.

Example

Consider the following basic example code, living in a header “MyClass.h”:

class MyClass {
public:

MyClass(int i) : fInt(i) {}
int get_int() { return fInt; }

private:
int fInt;

};

and a corresponding “Linkdef.h” file, selecting only MyClass:

#ifdef __ROOTCLING__
#pragma link off all classes;
#pragma link off all functions;
#pragma link off all globals;
#pragma link off all typedef;

#pragma link C++ class MyClass;

#endif

For more pragmas, see the rootcling manual. E.g., a commonly useful pragma is one that selects all C++ entities that
are declared in a specific header file:

#pragma link C++ defined_in "MyClass.h";

Next, use rootcling to generate the dictionary (here: MyClass_rflx.cxx) and module files:

$ rootcling -f MyClass_rflx.cxx MyClass.h Linkdef.h

Alternatively, define a “myclass_selection.xml” file:

<lcgdict>
<class name="MyClass" />

</lcgdict>

serving the same purpose as the Linkdef.h file above (in fact, rootcling accepts a “selection.xml” file in lieu of
a “Linkdef.h”). For more tags, see the selection file documentation. Commonly used are namespace, function,
enum, or variable instead of the class tag, and pattern instead of name with wildcarding in the value string.

Next, use genreflex to generate the dictionary (here: MyClass_rflx.cxx) and module files:
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$ genreflex MyClass.h --selection=myclass_selection.xml -o MyClass_rflx.cxx

From here, compile and link the generated dictionary file with the project and/or system specific options and libraries
into a shared library, using cling-config for the relevant cppyy compiler/linker flags. (For work on MS Windows,
this helper script may be useful.) To continue the example, assuming Linux:

$ g++ `cling-config --cppflags` -fPIC -O2 -shared MyClass_rflx.cxx -o MyClassDict.so

Instead of loading the header text into cling, you can now load the dictionary:

>>> import cppyy
>>> cppyy.load_reflection_info('MyClassDict')
>>> cppyy.gbl.MyClass(42)
<cppyy.gbl.MyClass object at 0x7ffb9f230950>
>>> print(_.get_int())
42
>>>

and use the selected C++ entities as if the header was loaded.

The dictionary shared library can be relocated, as long as it can be found by the dynamic loader (e.g. through
LD_LIBRARY_PATH) and the header file is fully embedded or still accessible (e.g. through a path added to cppyy.
add_include_path at run-time, or with -I to rootcling/genreflex during build time). When relocating
the shared library, move the .pcm with it. Once support for C++ modules is fully fleshed out, access to the header file
will no longer be needed.

19.2.2 Class loader

Explicitly loading dictionaries is fine if this is hidden under the hood of a Python package and thus transparently
done on import. Otherwise, the automatic class loader is more convenient, as it allows direct use without having to
manually find and load dictionaries (assuming these are locatable by the dynamic loader).

The class loader utilizes so-called rootmap files, which by convention should live alongside the dictionary shared
library (and C++ module file). These are simple text files, which map C++ entities (such as classes) to the dictionaries
and other libraries that need to be loaded for their use.

With genreflex, the mapping file can be automatically created with --rootmap-lib=MyClassDict, where
“MyClassDict” is the name of the shared library (without the extension) build from the dictionary file. With
rootcling, create the same mapping file with -rmf MyClassDict.rootmap -rml MyClassDict. It is
necessary to provide the final library name explicitly, since it is only in the separate linking step where these names
are fixed and those names may not match the default choice.

With the mapping file in place, the above example can be rerun without explicit loading of the dictionary:

>>> import cppyy
>>> from cppyy.gbl import MyClass
>>> MyClass(42).get_int()
42
>>>

19.3 Bindings collection

cppyy-generator is a clang-based utility program which takes a set of C++ header files and generates a JSON
output file describing the objects found in them. This output is intended to support more convenient access to a set of
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cppyy-supported bindings:

$ cppyy-generator --help
usage: cppyy-generator [-h] [-v] [--flags FLAGS] [--libclang LIBCLANG]

output sources [sources ...]
...

This utility is mainly used as part of the CMake interface.
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CHAPTER 20

CMake interface

CMake fragments are provided for an Automated generation of an end-user bindings package from a CMake-based
project build. The bindings generated by rootcling, are ‘raw’ in the sense that:

• The .cpp file be compiled. The required compilation steps are platform-dependent.

• The bindings are not packaged for distribution. Typically, users expect to have a pip-compatible package.

• The binding are in the ‘cppyy.gbl’ namespace. This is an inconvenience at best for users who might expect C++
code from KF5::Config to appear in Python via “import KF5.Config”.

• The bindings are loaded lazily, which limits the discoverability of the content of the bindings.

• cppyy supports customization of the bindings via ‘Pythonization’ but there is no automated way to load them.

These issues are addressed by the CMake support. This is a blend of Python packaging and CMake where CMake
provides:

• Platform-independent scripting of the creation of a Python ‘wheel’ package for the bindings.

• An facility for CMake-based projects to automate the entire bindings generation process, including basic auto-
mated tests.

Note: The JIT needs to resolve linker symbols in order to call them through generated wrappers. Thus, any classes,
functions, and data that will be used in Python need to be exported. This is the default behavior on Mac and Linux, but
not on Windows. On that platform, use __declspec(dllexport) to explicitly export the classes and function
you expect to call. CMake has simple support for exporting all C++ symbols.

20.1 Python packaging

Modern Python packaging usage is based on the ‘wheel’. This is places the onus on the creation of binary artifacts in
the package on the distributor. In this case, this includes the platform-dependent steps necessary to compile the .cpp
file.

The generated package also takes advantage of the __init__.py load-time mechanism to enhance the bindings:
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• The bindings are rehosted in a “native” namespace so that C++ code from KF5::Config appears in Python via
“import KF5.Config”.

• (TBD) Load Pythonizations.

Both of these need/can use the output of the cppyy-generator (included in the package) as well as other runtime support
included in cppyy.

20.2 CMake usage

The CMake usage is via two modules:

• FindLibClang.cmake provides some bootstrap support needed to locate clang. This is provided mostly as a
temporary measure; hopefully upstream support will allow this to be eliminated in due course.

• FindCppyy.cmake provides the interface described further here.

Details of the usage of these modules is within the modules themselves, but here is a summary of the usage.
FindLibClang.cmake sets the following variables:

LibClang_FOUND - True if libclang is found.
LibClang_LIBRARY - Clang library to link against.
LibClang_VERSION - Version number as a string (e.g. "3.9").
LibClang_PYTHON_EXECUTABLE - Compatible python version.

FindCppyy.cmake sets the following variables:

Cppyy_FOUND - set to true if Cppyy is found
Cppyy_DIR - the directory where Cppyy is installed
Cppyy_EXECUTABLE - the path to the Cppyy executable
Cppyy_INCLUDE_DIRS - Where to find the Cppyy header files.
Cppyy_VERSION - the version number of the Cppyy backend.

and also defines the following functions:

cppyy_add_bindings - Generate a set of bindings from a set of header files.
cppyy_find_pips - Return a list of available pip programs.

20.2.1 cppyy_add_bindings

Generate a set of bindings from a set of header files. Somewhat like CMake’s add_library(), the output is a compiler
target. In addition ancillary files are also generated to allow a complete set of bindings to be compiled, packaged and
installed:

cppyy_add_bindings(
pkg
pkg_version
author
author_email
[URL url]
[LICENSE license]
[LANGUAGE_STANDARD std]
[LINKDEFS linkdef...]
[IMPORTS pcm...]
[GENERATE_OPTIONS option...]

(continues on next page)
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(continued from previous page)

[COMPILE_OPTIONS option...]
[INCLUDE_DIRS dir...]
[LINK_LIBRARIES library...]
[H_DIRS H_DIRSectory]
H_FILES h_file...)

The bindings are based on https://cppyy.readthedocs.io/en/latest/, and can be used as per the documentation provided
via the cppyy.gbl namespace. First add the directory of the <pkg>.rootmap file to the LD_LIBRARY_PATH environ-
ment variable, then “import cppyy; from cppyy.gbl import <some-C++-entity>”.

Alternatively, use “import <pkg>”. This convenience wrapper supports “discovery” of the available C++ entities using,
for example Python 3’s command line completion support.

The bindings are complete with a setup.py, supporting Wheel-based packaging, and a test.py supporting pytest/nosetest
sanity test of the bindings.

The bindings are generated/built/packaged using 3 environments:

• One compatible with the header files being bound. This is used to generate the generic C++ binding code (and
some ancillary files) using a modified C++ compiler. The needed options must be compatible with the normal
build environment of the header files.

• One to compile the generated, generic C++ binding code using a standard C++ compiler. The resulting library
code is “universal” in that it is compatible with both Python2 and Python3.

• One to package the library and ancillary files into standard Python2/3 wheel format. The packaging is done
using native Python tooling.
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Arguments and options Description
pkg The name of the package to generate. This can be either

of the form “simplename” (e.g. “Akonadi”), or of the
form “namespace.simplename” (e.g. “KF5.Akonadi”).

pkg_version The version of the package.
author The name of the library author.
author_email The email address of the library author.
URL url The home page for the library. Default is “https://pypi.

python.org/pypi/<pkg>”.
LICENSE license The license, default is “LGPL 2.0”.
LANGUAGE_STANDARD std The version of C++ in use, “14” by default.
IMPORTS pcm Files which contain previously-generated bindings

which pkg depends on.
GENERATE_OPTIONS optio Options which are to be passed into the rootcling com-

mand. For example, bindings which depend on Qt may
need “-D__PIC__;-Wno-macro-redefined”.

LINKDEFS def Files or lines which contain extra #pragma con-
tent for the linkdef.h file used by rootcling. See
https://root.cern.ch/root/html/guides/users-guide/
AddingaClass.html#the-linkdef.h-file.
In lines, literal semi-colons must be escaped: “;”.

EXTRA_CODES code Files which contain extra code needed by the
bindings. Customization is by routines named
“c13n_<something>”; each such routine is passed the
module for <pkg>:
:: code-block python

def c13n_doit(pkg_module):
print(pkg_module.__dict__)

The files and individual routines within files are pro-
cessed in alphabetical order.

EXTRA_HEADERS hdr Files which contain extra headers needed by the bind-
ings.

EXTRA_PYTHONS py Files which contain extra Python code needed by the
bindings.

COMPILE_OPTIONS option Options which are to be passed into the compile/link
command.

INCLUDE_DIRS dir Include directories.
LINK_LIBRARIES library Libraries to link against.
H_DIRS directory Base directories for H_FILES.
H_FILES h_file Header files for which to generate bindings in pkg. Ab-

solute filenames, or filenames relative to H_DIRS. All
definitions found directly in these files will contribute
to the bindings. (NOTE: This means that if “forward-
ing headers” are present, the real “legacy” headers must
be specified as H_FILES). All header files which con-
tribute to a given C++ namespace should be grouped
into a single pkg to ensure a 1-to-1 mapping with the
implementing Python class.

Returns via PARENT_SCOPE variables:
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target The CMake target used to build.
setup_py The setup.py script used to build or install pkg.

Examples:

find_package(Qt5Core NO_MODULE)
find_package(KF5KDcraw NO_MODULE)
get_target_property(_H_DIRS KF5::KDcraw INTERFACE_INCLUDE_DIRECTORIES)
get_target_property(_LINK_LIBRARIES KF5::KDcraw INTERFACE_LINK_LIBRARIES)
set(_LINK_LIBRARIES KF5::KDcraw ${_LINK_LIBRARIES})
include(${KF5KDcraw_DIR}/KF5KDcrawConfigVersion.cmake)

cppyy_add_bindings(
"KDCRAW" "${PACKAGE_VERSION}" "Shaheed" "srhaque@theiet.org"
LANGUAGE_STANDARD "14"
LINKDEFS "../linkdef_overrides.h"
GENERATE_OPTIONS "-D__PIC__;-Wno-macro-redefined"
INCLUDE_DIRS ${Qt5Core_INCLUDE_DIRS}
LINK_LIBRARIES ${_LINK_LIBRARIES}
H_DIRS ${_H_DIRS}
H_FILES "dcrawinfocontainer.h;kdcraw.h;rawdecodingsettings.h;rawfiles.h")

20.2.2 cppyy_find_pips

Return a list of available pip programs.
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CHAPTER 21

PyPI Packages

21.1 Cppyy

The cppyy module is a frontend (see Package Structure), and most of the code is elsewhere. However, it does contain
the docs for all of the modules, which are built using Sphinx: http://www.sphinx-doc.org/en/stable/ and published to
http://cppyy.readthedocs.io/en/latest/index.html using a webhook. To create the docs:

$ pip install sphinx_rtd_theme
Collecting sphinx_rtd_theme
...
Successfully installed sphinx-rtd-theme-0.2.4
$ cd docs
$ make html

The Python code in this module supports:

• Interfacing to the correct backend for CPython or PyPy.

• Pythonizations (TBD)

21.2 Cppyy-backend

The cppyy-backend module contains two areas:

• A patched copy of cling

• Wrapper code

21.3 Package structure

There are four PyPA packages involved in a full installation, with the following structure:
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(A) _cppyy (PyPy)
/ \

(1) cppyy (3) cling-backend -- (4) cppyy-cling
\ /
(2) CPyCppyy (CPython)

The user-facing package is always cppyy (1). It is used to select the other (versioned) required packages, based on
the python interpreter for which it is being installed.

Below (1) follows a bifurcation based on interpreter. This is needed for functionality and performance: for CPython,
there is the CPyCppyy package (2). It is written in C++, makes use of the Python C-API, and installs as a Python
extension module. For PyPy, there is the builtin module _cppyy (A). This is not a PyPA package. It is written in
RPython as it needs access to low-level pointers, JIT hints, and the _cffi_backend backend module (itself builtin).

Shared again across interpreters is the backend, which is split in a small wrapper (3) and a large package that contains
Cling/LLVM (4). The former is still under development and expected to be updated frequently. It is small enough to
download and build very quickly. The latter, however, takes a long time to build, but since it is very stable, splitting it
off allows the creation of binary wheels that need updating only infrequently (expected about twice a year).

All code is publicly available; see the section on repositories.
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CHAPTER 22

Repositories

The cppyy module is a frontend that requires an intermediate (Python interpreter dependent) layer, and a backend
(see Package Structure). Because of this layering and because it leverages several existing packages through reuse, the
relevant codes are contained across a number of repositories.

• Frontend, cppyy: https://github.com/wlav/cppyy

• CPython (v2/v3) intermediate: https://github.com/wlav/CPyCppyy

• PyPy intermediate (module _cppyy): https://foss.heptapod.net/pypy

• Backend, cppyy: https://github.com/wlav/cppyy-backend

The backend repo contains both the cppyy-cling (under “cling”) and cppyy-backend (under “clingwrapper”) packages.

22.1 Building from source

Except for cppyy-cling, the structure in the repositories follows a normal PyPA package and they are thus ready to
build with setuptools: simply clone the package and either run python setup.py, or use pip.

It is highly recommended to follow the dependency chain when manually upgrading packages individually (i.e.
cppyy-cling, cppyy-backend, CPyCppyy if on CPython, and then finally cppyy), because upstream pack-
ages expose headers that are used by the ones downstream. Of course, if only building for a patch/point release, there
is no need to re-install the full chain (or follow the order). Always run the local updates from the package directories
(i.e. where the setup.py file is located), as some tools rely on the package structure.

The STDCXX envar can be used to control the C++ standard version; use MAKE to change the make command; and
MAKE_NPROCS to control the maximum number of parallel jobs. Compilation of the backend, which contains a
customized version of Clang/LLVM, can take a long time, so by default the setup script will use all cores (x2 if
hyperthreading is enabled).

On MS Windows, some temporary path names may be too long, causing the build to fail. To resolve this issue, point
the TMP and TEMP envars to an existing directory with a short name before the build: For example:
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> set TMP=C:\TMP
> set TEMP=C:\TMP

Start with the cppyy-cling package (cppyy-backend repo, subdirectory “cling”), which requires source to be pulled
in from upstream, and thus takes a few extra steps:

$ git clone https://github.com/wlav/cppyy-backend.git
$ cd cppyy-backend/cling
$ python setup.py egg_info
$ python create_src_directory.py
$ python -m pip install . --upgrade

The egg_info setup command is needed for create_src_directory.py to find the right version. That script
in turn downloads the proper release from upstream, trims and patches it, and installs the result in the “src” directory.
When done, the structure of cppyy-cling looks again like a PyPA package and can be used/installed as expected,
here using pip.

The cppyy-cling package, because it contains Cling/Clang/LLVM, is rather large to build, so by default the setup
script will use all cores (x2 if hyperthreading is enabled). You can change this behavior with the MAKE_NPROCS
envar. The wheel of cppyy-cling is reused by pip for all versions of CPython and PyPy, thus the long compilation
is needed only once for all different versions of Python on the same machine.

Next up is cppyy-backend (cppyy-backend, subdirectory “clingwrapper”; omit the first step if you already cloned
the repo for cppyy-cling):

$ git clone https://github.com/wlav/cppyy-backend.git
$ cd cppyy-backend/clingwrapper
$ python -m pip install . --upgrade --no-use-pep517 --no-deps

Note the use of --no-use-pep517, which prevents pip from needlessly going out to pypi.org and creating a local
“clean” build environment from the cached or remote wheels. Instead, by skipping PEP 517, the local installation will
be used. This is imperative if there was a change in public headers or if the version of cppyy-cling was locally
updated and is thus not available on PyPI.

Upgrading CPyCppyy (if on CPython; it’s not needed for PyPy) and cppyy is very similar:

$ git clone https://github.com/wlav/CPyCppyy.git
$ cd CPyCppyy
$ python -m pip install . --upgrade --no-use-pep517 --no-deps

Finally, the top-level package cppyy:

$ git clone https://github.com/wlav/cppyy.git
$ cd cppyy
$ python -m pip install . --upgrade --no-use-pep517 --no-deps

Please see the pip documentation for more options, such as developer mode.
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CHAPTER 23

Test suite

The cppyy tests live in the top-level cppyy package, can be run for both CPython and PyPy, and exercises the full
setup, including the backend. Most tests are standalone and can be run independently, with a few exceptions in the
template tests (see file test_templates.py).

To run the tests, first install cppyy by any usual means, then clone the cppyy repo, and enter the test directory:

$ git clone https://github.com/wlav/cppyy.git
$ cd cppyy/test

Next, build the dictionaries, the manner of which depends on your platform. On Linux or MacOS-X, run make:

$ make all

On Windows, run the dictionary building script:

$ python make_dict_win32.py all

Next, make sure you have pytest installed, for example with pip:

$ python -m pip install pytest

and finally run the tests:

$ python -m pytest -sv

On Linux and MacOS-X, all tests should succeed. On MS Windows 32bit there are 4 failing tests, on 64bit there are
5 still failing.
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CHAPTER 24

History

What is now called cppyy started life as RootPython from CERN, but cppyy is not associated with CERN (it is still
used there, however, underpinning PyROOT).

Back in late 2002, Pere Mato of CERN, had the idea of using the CINT C++ interpreter, which formed the interactive
interface to ROOT, to call from Python into C++: this became RootPython. This binder interfaced with Python
through boost.python (v1), transpiling Python code into C++ and interpreting the result with CINT. In early 2003, I
ported this code to boost.python v2, then recently released. In practice, however, re-interpreting the transpiled code
was unusably slow, thus I modified the code to make direct use of CINT’s internal reflection system, gaining about 25x
in performance. I presented this work as PyROOT at the ROOT Users’ Workshop in early 2004, and, after removing
the boost.python dependency by using the C-API directly (gaining another factor 7 in speedup!), it was included in
ROOT. PyROOT was presented at the SciPy’06 conference, but was otherwise not advocated outside of High Energy
Physics (HEP).

In 2010, the PyPy core developers and I held a sprint at CERN to use Reflex, a standalone alternative to CINT’s
reflection of C++, to add automatic C++ bindings, PyROOT-style, to PyPy. This is where the name “cppyy” originated.
Coined by Carl Friedrich Bolz, if you want to understand the meaning, just pronounce it slowly: cpp-y-y.

After the ROOT team replaced CINT with Cling, PyROOT soon followed. As part of Google’s Summer of Code ‘16,
Aditi Dutta moved PyPy/cppyy to Cling as well, and packaged the code for use through PyPI. I continued this integra-
tion with the Python eco-system by forking PyROOT, reducing its dependencies, and repackaging it as CPython/cppyy.
The combined result is the current cppyy project. Mid 2018, version 1.0 was released.
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CHAPTER 25

Philosophy

As a Python-C++ language binder, cppyy has several unique features: it fills gaps and covers use cases not avail-
able through other binders. This document explains some of the design choices made and the thinking behind the
implementations of those features. It’s categorized as “philosophy” because a lot of it is open to interpretation. Its
main purpose is simply to help you decide whether cppyy covers your use cases and binding requirements, before
committing any time to trying it out.

25.1 Run-time v.s. compile-time

What performs better, run-time or compile-time? The obvious answer is compile-time: see the performance differences
between C++ and Python, for example. Obvious, but completely wrong, however. In fact, when it comes to Python, it
is even the wrong question.

Everything in Python is run-time: modules, classes, functions, etc. are all run-time constructs. A Python module that
defines a class is a set of instructions to the Python interpreter that lead to the construction of the desired class object.
A C/C++ extension module that defines a class does the same thing by calling a succession of Python interpreter
Application Programming Interfaces (APIs; the exact same that Python uses itself internally). If you use a compile-
time binder such as SWIG or pybind11 to bind a C++ class, then what gets compiled is the series of API calls necessary
to construct a Python-side equivalent at run-time (when the module gets loaded), not the Python class object. In short,
whether a binding is created at “compile-time” or at run-time has no measurable bearing on performance.

What does affect performance is the overhead to cross the language barrier. This consists of unboxing Python objects
to extract or convert the underlying objects or data to something that matches what C++ expects; overload resolution
based on the unboxed arguments; offset calculations; and finally the actual dispatch. As a practical matter, overload
resolution is the most costly part, followed by the unboxing and conversion. Best performance is achieved by spe-
cialization of the paths through the run-time: recognize early the case at hand and select an optimized path. For that
reason, PyPy is so fast: JIT-ed traces operate on unboxed objects and resolved overloads are baked into the trace, in-
curring no further cost. Similarly, this is why pybind11 is so slow: its code generation is the C++ compiler’s template
engine, so complex path selection and specialization is very hard to do in a performance-portable way.

In cppyy, a great deal of attention has gone into built-in specialization paths, which drives its performance. For ex-
ample, basic inheritance sequentially lines up classes, whereas multiple (virtual) inheritance usually requires thunks.
Thus, when calling base class methods on a derived instance, the latter requires offset calculations that depend on
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that instance, whereas the former has fixed offsets fully determined by the class definitions themselves. By labeling
classes appropriately, single inheritance classes (by far the most common case) do not incur the overhead in PyPy’s
JIT-ed traces that is otherwise unavoidable for multiple virtual inheritance. As another example, consider that the
C++ standard does not allow modifying a std::vector while looping over it, whereas Python has no such restric-
tion, complicating loops. Thus, cppyy has specialized std::vector iteration for both PyPy and CPython, easily
outperforming looping over an equivalent numpy array.

In CPython, the performance of non-overloaded function calls depends greatly on the Python interpreter’s internal
specializations; and Python3 has many specializations specific to basic extension modules (C function pointer calls),
gaining a performance boost of more than 30% over Python2. Only since Python3.8 is there also better support for
closure objects (vector calls) as cppyy uses, to short-cut through the interpreter’s own overhead.

As a practical consideration, whether a binder performs well on code that you care about, depends entirely on whether
it has the relevant specializations for your most performance-sensitive use cases. The only way to know for sure is to
write a test application and measure, but a binder that provides more specializations, or makes it easy to add your own,
is more likely to deliver.

25.2 Manual v.s. automatic

Python is, today, one of the most popular programming languages and has a rich and mature eco-system around it. But
when the project that became cppyy started in the field of High Energy Physics (HEP), Python usage was non-existent
there. As a Python user to work in this predominantly C++ environment, you had to bring your own bindings, thus
automatic was the only way to go. Binders such as SWIG, SIP (or even boost.python with Pyste) all had the fatal
assumption that you were providing Python bindings to your own C++ code, and that you were thus able to modify
those (many) areas of the C++ codes that their parsers could not handle. The CINT interpreter was already well
established in HEP, however, and although it, too, had many limitations, C++ developers took care not to write code
that it could not parse. In particular, since CINT drove automatic I/O, all data classes as needed for analysis were
parsable by CINT and consequently, by using CINT for the bindings, at the very least one could run any analysis in
Python. This was key.

Besides not being able to parse some code (a problem that’s history for cppyy since moving to Cling), all automatic
parsers suffer from the problem that the bindings produced have a strong “C++ look-and-feel” and that choices need
to be made in cases that can be bound in different, equally valid, ways. As an example of the latter, consider the return
of an std::vector: should this be automatically converted to a Python list? Doing so is more “pythonic”, but
incurs a significant overhead, and no automatic choice will satisfy all cases: user input is needed.

The typical way to solve these issues, is to provide an intermediate language where corner cases can be brushed up,
code can be made more Python friendly, and design choices can be resolved. Unfortunately, learning an intermediate
language is quite an investment in time and effort. With cppyy, however, no such extra language is needed: using
Cling, C++ code can be embedded and JIT-ed for the same purpose. In particular, cppyy can handle boxed Python
objects and the full Python C-API is available through Cling, allowing complete manual control where necessary, and
all within a single code base. Similarly, a more pythonistic look-and-feel can be achieved in Python itself. As a rule,
Python is always the best place, far more so than any intermediate language, to do Python-thingies. Since all bound
proxies are normal Python classes, functions, etc., Python’s introspection (and regular expressions engine) can be used
to provide rule based improvements in a way similar to the use of directives in an intermediate language.

On a practical note, it’s often said that an automatic binder can provide bindings to 95% of your code out-of-the-box,
with only the remaining part needing manual intervention. This is broadly true, but realize that that 5% contains the
most difficult cases and is where 20-30% of the effort would have gone in case the bindings were done fully manually.
It is therefore important to consider what manual tools an automatic binder offers and to make sure they fit your work
style and needs, because you are going to spend a significant amount of time with them.
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25.3 LLVM dependency

cppyy depends on LLVM, through Cling. LLVM is properly internalized, so that it doesn’t conflict with other uses;
and in particular it is fine to mix Numba and cppyy code. It does mean a download cost of about 20MB for the binary
wheel (exact size differs per platform) on installation, and additional primarily initial memory overheads at run-time.
Whether this is onerous depends strongly not only on the application, but also on the rest of the software stack.

The initial cost of loading cppyy, and thus starting the Cling interpreter, is about 45MB (platform dependent). Initial
uses of standard (e.g. STL) C++ results in deserialization of the precompiled header at another eventual total cost of
about 25MB (again, platform dependent). The actual bindings of course also carry overheads. As a rule of thumb, you
should budget for ~100MB all-in for the overhead caused by the bindings.

Other binders do not have this initial memory overhead, but do of course occur an overhead per module, class, function,
etc. At scale, however, cppyy has some advantages: all binding is lazy (including the option of automatic loading),
standard classes are never duplicated, and there is no additional “per-module” overhead. Thus, eventually (depending
on the number of classes bound, across how many modules, what use fraction, etc.), this initial cost is recouped when
compared to other binders. As a rule of thumb, if about 10% of classes are used, it takes several hundreds of bound
classes before the cppyy-approach is beneficial. In High Energy Physics, from which it originated, cppyy is regularly
used in software stacks of many thousands of classes, where this advantage is very important.

25.4 Distributing headers

cppyy requires C/C++ headers to be available at run-time, which was never a problem in the developer-centric world
from which it originated: software always had supported C++ APIs already, made available through header files, and
Python simply piggy-backed onto those. JIT-ing code in those headers, which potentially picked up system headers
that were configured differently, was thus also never a problem. Or rather, the same problem exists for C++, and
configuration for C++ to resolve potential issues translates transparently to Python.

There are only two alternatives: precompile headers into LLVM bitcode and distribute those or provide a restricted set
of headers. Precompiled headers (and modules) were never designed to be portable and relocatable, however, thus that
may not be the panacea it seems. A restricted set of headers is some work, but cppyy can operate on abstract interface
classes just fine (including Python-side cross-inheritance).

25.5 Large deployment

The single biggest headache in maintaining an installation of Python extension modules is that Python patch releases
can break them. The two typical solutions are to either restrict the choice of Python interpreter and version that are
supported (common in HPC) or to provide binaries (wheels) for a large range of different interpreters and versions (as
e.g. done for conda).

In the case of cppyy, only CPython/CPyCppyy and PyPy/_cppyy (an internal module) depend on the Python inter-
preter (see: Package Structure). The user-facing cppyy module is pure Python and the backend (Cling) is Python-
independent. Most importantly, since all bindings are generated at run-time, there are no extension modules to regen-
erate and/or recompile.

Thus, the end-user only needs to rebuild/reinstall CPyCppyy for each relevant version of Python (and nothing extra
is needed for PyPy) to switch Python versions and/or interpreter. The rest of the software stack remains completely
unchanged. Only if Cling in cppyy’s backend is updated, which happens infrequently, and non-standard precompiled
headers or modules are used, do these need to be rebuild in full.
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CHAPTER 26

Bugs and feedback

Please report bugs or requests for improvement on the issue tracker.
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